-
Notifications
You must be signed in to change notification settings - Fork 3.4k
/
Copy pathdata.py
582 lines (493 loc) · 24.8 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
import inspect
import os
from collections import OrderedDict
from contextlib import contextmanager
from dataclasses import fields
from functools import partial
from typing import Any, Callable, Dict, Generator, Iterable, Mapping, Optional, Set, Tuple, Type, Union
import torch
from torch import Tensor
from torch.utils.data import (
BatchSampler,
DataLoader,
Dataset,
IterableDataset,
RandomSampler,
Sampler,
SequentialSampler,
)
import pytorch_lightning as pl
from pytorch_lightning.overrides.distributed import IndexBatchSamplerWrapper
from pytorch_lightning.trainer.states import RunningStage
from pytorch_lightning.utilities.apply_func import _is_dataclass_instance
from pytorch_lightning.utilities.auto_restart import CaptureIterableDataset, CaptureMapDataset, FastForwardSampler
from pytorch_lightning.utilities.enums import _FaultTolerantMode
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.rank_zero import rank_zero_warn
from pytorch_lightning.utilities.seed import pl_worker_init_function
from pytorch_lightning.utilities.warnings import WarningCache
BType = Union[Tensor, str, Mapping[Any, "BType"], Iterable["BType"]]
warning_cache = WarningCache()
def _extract_batch_size(batch: BType) -> Generator[int, None, None]:
if isinstance(batch, Tensor):
if batch.ndim == 0:
yield 1
else:
yield batch.size(0)
elif isinstance(batch, (Iterable, Mapping)) and not isinstance(batch, str):
if isinstance(batch, Mapping):
batch = batch.values()
for sample in batch:
yield from _extract_batch_size(sample)
elif _is_dataclass_instance(batch):
for field in fields(batch):
yield from _extract_batch_size(getattr(batch, field.name))
else:
yield None
def extract_batch_size(batch: BType) -> int:
"""Unpack a batch to find a ``torch.Tensor``.
Returns:
``len(tensor)`` when found, or ``1`` when it hits an empty or non iterable.
"""
error_msg = (
"We could not infer the batch_size from the batch. Either simplify its structure"
" or provide the batch_size as `self.log(..., batch_size=batch_size)`."
)
batch_size = None
try:
for bs in _extract_batch_size(batch):
if batch_size is None:
batch_size = bs
elif batch_size != bs:
warning_cache.warn(
"Trying to infer the `batch_size` from an ambiguous collection. The batch size we"
f" found is {batch_size}. To avoid any miscalculations, use `self.log(..., batch_size=batch_size)`."
)
break
except RecursionError:
raise RecursionError(error_msg)
if batch_size is None:
raise MisconfigurationException(error_msg)
return batch_size
def has_iterable_dataset(dataloader: DataLoader) -> bool:
return hasattr(dataloader, "dataset") and isinstance(dataloader.dataset, IterableDataset)
def has_len(dataloader: Union[DataLoader, Iterable]) -> bool:
"""Checks if a given Dataloader has ``__len__`` method implemented i.e. if it is a finite dataloader or
infinite dataloader."""
try:
# try getting the length
if len(dataloader) == 0:
rank_zero_warn(
f"`{dataloader.__class__.__name__}` returned 0 length. Please make sure this was your intention."
)
has_len = True
except TypeError:
has_len = False
except NotImplementedError: # e.g. raised by torchtext if a batch_size_fn is used
has_len = False
if has_len and has_iterable_dataset(dataloader):
rank_zero_warn(
"Your `IterableDataset` has `__len__` defined."
" In combination with multi-process data loading (when num_workers > 1),"
" `__len__` could be inaccurate if each worker is not configured independently"
" to avoid having duplicate data."
)
return has_len
def has_len_all_ranks(
dataloader: DataLoader,
training_type: "pl.Strategy",
model: Union["pl.LightningModule", "pl.LightningDataModule"],
) -> bool:
"""Checks if a given Dataloader has ``__len__`` method implemented i.e. if it is a finite dataloader or
infinite dataloader."""
try:
local_length = len(dataloader)
total_length = training_type.reduce(torch.tensor(local_length).to(model.device), reduce_op="sum")
if total_length == 0:
rank_zero_warn(
f"Total length of `{dataloader.__class__.__name__}` across ranks is zero."
" Please make sure this was your intention."
)
if total_length > 0 and local_length == 0:
if model.allow_zero_length_dataloader_with_multiple_devices:
rank_zero_warn(
f"Total length of `{dataloader.__class__.__name__}` across ranks is zero, but local rank has zero"
" length. Please be cautious of uneven batch length."
)
has_len = False
else:
raise MisconfigurationException(
f"`{dataloader.__class__.__name__}` within local rank has zero length."
" Please make sure that it returns at least 1 batch."
)
else:
has_len = True
except TypeError:
has_len = False
except NotImplementedError: # e.g. raised by torchtext if a batch_size_fn is used
has_len = False
if has_len and has_iterable_dataset(dataloader):
rank_zero_warn(
"Your `IterableDataset` has `__len__` defined."
" In combination with multi-process data loading (when num_workers > 1),"
" `__len__` could be inaccurate if each worker is not configured independently"
" to avoid having duplicate data."
)
return has_len
def get_len(dataloader: DataLoader) -> Union[int, float]:
"""Return the length of the given DataLoader.
If ``__len__`` method is not implemented, return float('inf').
"""
if has_len(dataloader):
return len(dataloader)
return float("inf")
def _update_dataloader(
dataloader: DataLoader, sampler: Union[Sampler, Iterable], mode: Optional[RunningStage] = None
) -> DataLoader:
dl_args, dl_kwargs = _get_dataloader_init_args_and_kwargs(dataloader, sampler, mode)
dl_cls = type(dataloader)
try:
dataloader = dl_cls(*dl_args, **dl_kwargs)
except TypeError as e:
# improve exception message due to an incorrect implementation of the `DataLoader` where multiple subclass
# `__init__` arguments map to one `DataLoader.__init__` argument
import re
match = re.match(r".*__init__\(\) got multiple values .* '(\w+)'", str(e))
if not match:
# an unexpected `TypeError`, continue failure
raise
argument = match.groups()[0]
message = (
f"The {dl_cls.__name__} `DataLoader` implementation has an error where more than one `__init__` argument"
f" can be passed to its parent's `{argument}=...` `__init__` argument. This is likely caused by allowing"
f" passing both a custom argument that will map to the `{argument}` argument as well as `**kwargs`."
f" `kwargs` should be filtered to make sure they don't contain the `{argument}` key."
" This argument was automatically passed to your DataLoader by PyTorch Lightning."
)
raise MisconfigurationException(message) from e
return dataloader
def _get_dataloader_init_args_and_kwargs(
dataloader: DataLoader,
sampler: Optional[Sampler],
mode: Optional[RunningStage] = None,
disallow_batch_sampler: bool = False,
) -> Tuple[Tuple[Any], Dict[str, Any]]:
if not isinstance(dataloader, DataLoader):
raise ValueError(f"The dataloader {dataloader} needs to subclass `torch.utils.data.DataLoader`")
was_wrapped = hasattr(dataloader, "__pl_saved_args")
if was_wrapped:
dl_args = dataloader.__pl_saved_args
dl_kwargs = dataloader.__pl_saved_kwargs
arg_names = dataloader.__pl_saved_arg_names
original_dataset = dataloader.__dataset # we have this saved from _wrap_init
else:
# get the dataloader instance attributes
attrs = {k: v for k, v in vars(dataloader).items() if not k.startswith("_")}
# We cannot be 100% sure the class sets dataset argument. Let's set it to None to be safe
# and hope we can get it from the instance attributes
original_dataset = None
# not part of `vars`
attrs["multiprocessing_context"] = dataloader.multiprocessing_context
arg_names = ()
# get the dataloader instance `__init__` parameters
params = dict(inspect.signature(dataloader.__init__).parameters)
has_variadic_kwargs = any(p.kind is p.VAR_KEYWORD for p in params.values())
if has_variadic_kwargs:
# if the signature takes **kwargs, assume they will be passed down with `super().__init__(**kwargs)`
if was_wrapped:
# if the dataloader was wrapped in a hook, only take arguments with default values
# and assume user passes their kwargs correctly
params.update(
{k: v for k, v in inspect.signature(DataLoader.__init__).parameters.items() if v.default is not v.empty}
)
else:
params.update(inspect.signature(DataLoader.__init__).parameters)
params.pop("self", None)
if not was_wrapped:
# keep only the params whose default is different to the current attr value
non_defaults = {name for name, p in params.items() if name in attrs and p.default != attrs[name]}
# add `dataset` as it might have been replaced with `*args`
non_defaults.add("dataset")
# kwargs to re-construct the dataloader
dl_kwargs = {k: v for k, v in attrs.items() if k in non_defaults}
dl_args = ()
dataset = dl_kwargs.get("dataset", original_dataset)
if isinstance(dataset, IterableDataset):
dl_kwargs["batch_sampler"] = None
dl_kwargs["sampler"] = None
else:
dl_kwargs.update(_dataloader_init_kwargs_resolve_sampler(dataloader, sampler, mode, disallow_batch_sampler))
required_args = {
p.name
for p in params.values()
if p.kind in (p.POSITIONAL_ONLY, p.POSITIONAL_OR_KEYWORD)
and p.default is p.empty
and p.name not in dl_kwargs
and p.name not in arg_names
}
# the dataloader has required args which we could not extract from the existing attributes
if required_args:
required_args = sorted(required_args)
dataloader_cls_name = dataloader.__class__.__name__
missing_args_message = ", ".join(f"`self.{arg_name}`" for arg_name in required_args)
raise MisconfigurationException(
f"Trying to inject custom `Sampler` into the `{dataloader_cls_name}` instance. "
"This would fail as some of the `__init__` arguments are not available as instance attributes. "
f"The missing attributes are {required_args}. If you instantiate your `{dataloader_cls_name}` inside a "
"`*_dataloader` hook of your module, we will do this for you."
f" Otherwise, define {missing_args_message} inside your `__init__`."
)
if not has_variadic_kwargs:
# the dataloader signature does not allow keyword arguments that need to be passed
missing_kwargs = (set(dl_kwargs) | set(arg_names)) - params.keys()
if missing_kwargs:
missing_kwargs = sorted(missing_kwargs)
dataloader_cls_name = dataloader.__class__.__name__
raise MisconfigurationException(
f"Trying to inject parameters into the `{dataloader_cls_name}` instance. "
"This would fail as it doesn't expose all its attributes in the `__init__` signature. "
f"The missing arguments are {missing_kwargs}. HINT: If you wrote the `{dataloader_cls_name}` class, "
"add the `__init__` arguments or allow passing `**kwargs`"
)
if _FaultTolerantMode.detect_current_mode().is_automatic:
dl_args, dl_kwargs = _apply_fault_tolerant_automatic_capture_dataset_wrapper(
was_wrapped, arg_names, dl_args, dl_kwargs
)
return dl_args, dl_kwargs
def _dataloader_init_kwargs_resolve_sampler(
dataloader: DataLoader,
sampler: Optional[Sampler],
mode: Optional[RunningStage] = None,
disallow_batch_sampler: bool = False,
) -> Dict[str, Any]:
"""This function is used to handle the sampler, batch_sampler arguments associated within a DataLoader for its
re-instantiation.
If the dataloader is being used for prediction, the sampler will be wrapped into an `IndexBatchSamplerWrapper`, so
Lightning can keep track of its indices. If fault tolerant training is enabled, the sampler will be wrapped into a
`FastForwardSampler`.
If there are multiple devices in IPU mode, it is necessary to disallow BatchSampler that isn't instantiated
automatically, since `poptorch.DataLoader` will try to increase the batch_size
"""
fault_tolerant_mode = _FaultTolerantMode.detect_current_mode()
batch_sampler = getattr(dataloader, "batch_sampler")
is_predicting = mode == RunningStage.PREDICTING
if batch_sampler is not None:
if disallow_batch_sampler:
# Check that we don't have a PyTorch default batch sampler that was instantiated in DataLoader __init__
if not (
type(batch_sampler) is BatchSampler
and batch_sampler.sampler == sampler
and dataloader.batch_size == batch_sampler.batch_size
):
raise MisconfigurationException(
"It is not possible to have a batch sampler in your dataloader, "
"when running on multiple IPU devices."
)
elif type(batch_sampler) is not BatchSampler or is_predicting:
batch_sampler_cls = type(batch_sampler)
if hasattr(batch_sampler, "__pl_saved_args"):
args = batch_sampler.__pl_saved_args
kwargs = batch_sampler.__pl_saved_kwargs
default_kwargs = batch_sampler.__pl_saved_default_kwargs
arg_names = batch_sampler.__pl_saved_arg_names
if is_predicting:
success, args, kwargs = _replace_value_in_saved_args(
"drop_last", False, args, kwargs, default_kwargs, arg_names
)
if not success:
rank_zero_warn(
f"Trying to inject `drop_last=False` into batch sampler since you are predicting, however "
f"it seems the class `{batch_sampler_cls.__qualname__}` does not support it. "
"Your predictions might be incomplete. To mitigate this, expose `drop_last` in "
"the `__init__` method of your custom class."
)
success, args, kwargs = _replace_value_in_saved_args(
"sampler", sampler, args, kwargs, default_kwargs, arg_names
)
if not success:
raise TypeError(
"Trying to inject a modified sampler into the batch sampler; however, it seems the class "
f"`{batch_sampler_cls.__qualname__}` does not have an argument called `sampler.` To mitigate "
"this, expose an argument `sampler` in the `__init__` method of your custom class."
)
batch_sampler = batch_sampler_cls(*args, **kwargs)
else:
try:
batch_sampler = batch_sampler_cls(
sampler,
batch_size=batch_sampler.batch_size,
drop_last=(False if is_predicting else batch_sampler.drop_last),
)
except TypeError as e:
import re
match = re.match(r".*__init__\(\) (got multiple values)|(missing \d required)", str(e))
if not match:
# an unexpected `TypeError`, continue failure
raise
# There could either be too few or too many arguments. Customizing the message based on this doesn't
# make much sense since our MisconfigurationException is going to be raised from the original one.
raise MisconfigurationException(
"We tried to re-instantiate your custom batch sampler and failed. "
"To mitigate this, either follow the API of `BatchSampler` or instantiate "
"your custom batch sampler inside `*_dataloader` hooks of your module."
) from e
if is_predicting:
batch_sampler = IndexBatchSamplerWrapper(batch_sampler)
if fault_tolerant_mode.is_automatic:
fast_forward_sampler = batch_sampler = FastForwardSampler(batch_sampler)
fast_forward_sampler.setup(dataloader_batch_size=1)
return {
"sampler": None,
"shuffle": False,
"batch_sampler": batch_sampler,
"batch_size": 1,
"drop_last": False,
}
if fault_tolerant_mode.is_automatic:
fast_forward_sampler = sampler = FastForwardSampler(sampler)
fast_forward_sampler.setup(dataloader_batch_size=dataloader.batch_size)
return {"sampler": sampler, "shuffle": False, "batch_sampler": None}
def _replace_value_in_saved_args(
replace_key: str,
replace_value: Any,
args: Tuple[Any, ...],
kwargs: Dict[str, Any],
default_kwargs: Dict[str, Any],
arg_names: Tuple[str, ...],
) -> Tuple[bool, Tuple[Any, ...], Dict[str, Any]]:
"""Tries to replace an argument value in a saved list of args and kwargs.
Returns a tuple indicating success of the operation and modified saved args and kwargs
"""
if replace_key in arg_names:
replace_index = arg_names.index(replace_key)
args = args[:replace_index] + (replace_value,) + args[replace_index + 1 :]
return True, args, kwargs
elif replace_key in kwargs or replace_key in default_kwargs:
kwargs[replace_key] = replace_value
return True, args, kwargs
return False, args, kwargs
def _auto_add_worker_init_fn(dataloader: DataLoader, rank: int) -> None:
if int(os.environ.get("PL_SEED_WORKERS", 0)) and dataloader.worker_init_fn is None:
dataloader.worker_init_fn = partial(pl_worker_init_function, rank=rank)
def _wrap_init_method(init: Callable, store_explicit_arg: Optional[str] = None) -> Callable:
"""Wraps the ``__init__`` method of classes (currently :class:`~torch.utils.data.DataLoader` and
:class:`~torch.utils.data.BatchSampler`) in order to enable re-instantiation of custom subclasses."""
@functools.wraps(init)
def wrapper(obj: Any, *args: Any, **kwargs: Any) -> None:
# We need to inspect `init`, as inspecting `obj.__init__`
# can lead to inspecting the wrong function with multiple inheritance
params = inspect.signature(init).parameters
parameters_defaults = OrderedDict(
(param.name, param.default)
for param in params.values()
if param.name != "self" and param.kind not in (param.VAR_POSITIONAL, param.VAR_KEYWORD)
)
param_names = tuple(parameters_defaults)[: len(args)]
default_kwargs = {
name: value
for name, value in parameters_defaults.items()
if name not in kwargs and name not in param_names and value != inspect.Parameter.empty
}
if not hasattr(obj, "__pl_saved_args"):
obj.__pl_saved_args = args
obj.__pl_saved_kwargs = kwargs
obj.__pl_saved_arg_names = param_names
obj.__pl_saved_default_kwargs = default_kwargs
# We want to use the latest possible value for explicit argument (i.e. ideally what gets passed to base class)
# so that we can be sure, that it will not get changed anymore.
# That is why we are setting this in every `__init__`
if store_explicit_arg is not None:
if store_explicit_arg in param_names:
setattr(obj, f"__{store_explicit_arg}", args[param_names.index(store_explicit_arg)])
elif store_explicit_arg in kwargs:
setattr(obj, f"__{store_explicit_arg}", kwargs[store_explicit_arg])
init(obj, *args, **kwargs)
return wrapper
# https://stackoverflow.com/a/63851681/9201239
def _get_all_subclasses(cls: Type[Any]) -> Set[Type[Any]]:
"""Returns a list of all classes that inherit directly or indirectly from the given class."""
subclasses = set()
def recurse(cl: Type[Any]) -> None:
for subclass in cl.__subclasses__():
subclasses.add(subclass)
recurse(subclass)
recurse(cls)
return subclasses
@contextmanager
def _replace_init_method(base_cls: Type, store_explicit_arg: Optional[str] = None) -> Generator[None, None, None]:
"""This context manager is used to add support for re-instantiation of custom (subclasses) of `base_cls`.
It patches the ``__init__`` method.
"""
classes = _get_all_subclasses(base_cls) | {base_cls}
wrapped = set()
for cls in classes:
if cls.__init__ not in wrapped:
cls._old_init = cls.__init__
cls.__init__ = _wrap_init_method(cls.__init__, store_explicit_arg)
wrapped.add(cls.__init__)
yield
for cls in classes:
if hasattr(cls, "_old_init"):
cls.__init__ = cls._old_init
del cls._old_init
def _wrap_with_capture_dataset(dataset: Dataset) -> Dataset:
if isinstance(dataset, IterableDataset):
# wrap the `IterableDataset` into a `CaptureIterableDataset` to record sampler states.
return CaptureIterableDataset(dataset=dataset)
if get_len(dataset) != float("inf"):
return CaptureMapDataset(dataset=dataset)
raise RuntimeError("This shouldn't happen, please open an issue on Lightning Github repository.")
def _apply_fault_tolerant_automatic_capture_dataset_wrapper(
was_wrapped: bool, arg_names: Tuple[str, ...], dl_args: Tuple[Any, ...], dl_kwargs: Dict[str, Any]
) -> Tuple[Tuple[str, ...], Dict[str, Any]]:
if "dataset" in dl_kwargs:
dl_kwargs["dataset"] = _wrap_with_capture_dataset(dl_kwargs["dataset"])
elif "dataset" in arg_names:
dataset_idx = arg_names.index("dataset")
dataset = _wrap_with_capture_dataset(dl_args[dataset_idx])
dl_args = dl_args[:dataset_idx] + (dataset,) + dl_args[dataset_idx + 1 :]
else:
if was_wrapped:
avoid_message = (
" To avoid this, either pass `DataLoader(dataset=your_dataset)` or the positional dataset argument"
" `DataLoader(your_dataset, ...)`."
)
else:
avoid_message = " To avoid this, define `self.dataset = dataset` inside your DataLoader's `__init__`."
raise MisconfigurationException(
"You enabled automatic Fault Tolerant mode, but we were not able to replace your dataset"
" with Fault Tolerant wrapper, because you have a custom DataLoader." + avoid_message
)
return dl_args, dl_kwargs
def _is_dataloader_shuffled(dataloader: object) -> bool:
if hasattr(dataloader, "__pl_saved_kwargs"):
# this attribute is not part of PyTorch's DataLoader, but could have been set by
# our `_replace_init_method` context manager
if "shuffle" in dataloader.__pl_saved_kwargs:
return dataloader.__pl_saved_kwargs["shuffle"]
if "shuffle" in dataloader.__pl_saved_arg_names:
return dataloader.__pl_saved_args[dataloader.__pl_saved_arg_names.index("shuffle")]
if isinstance(dataloader.dataset, IterableDataset):
# shuffling is useless with iterable datasets
return False
if not hasattr(dataloader, "sampler"):
# shuffling is enabled via a sampler. No sampler, no shuffling
return False
sampler = dataloader.sampler
if isinstance(sampler, SequentialSampler):
return False
return isinstance(sampler, RandomSampler)