-
Notifications
You must be signed in to change notification settings - Fork 3.4k
/
automatic.py
137 lines (105 loc) · 5.07 KB
/
automatic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Here is an example of `Lightning Fault Tolerant Automatic`.
Find the documentation: https://pytorch-lightning.readthedocs.io/en/stable/advanced/fault_tolerant_training.html
RUN WITHOUT FAILURE:
1. Launch `python pl_examples/fault_tolerant/automatic.py`.
- You should see `[-1.1343, 0.0186]` in the logs.
RUN WITH SIMULATED FAILURE:
1. Launch `python pl_examples/fault_tolerant/automatic.py --emulate_kill_signal`.
- You should see `kill -SIGTERM {PID}` in the logs.
2. Run this command within another terminal.
- You should see `Received signal 15. Saving a fault-tolerant checkpoint and terminating.` in the logs.
3. Launch `python pl_examples/fault_tolerant/automatic.py --emulate_kill_signal` again.
- You should see `Restored all states from the checkpoint file at ./.pl_auto_save.ckpt`
- And you should see `[-1.1343, 0.0186]` in the logs.
To restart the process, just run `rm .pl_auto_save.ckpt` to delete the auto restart checkpoint.
This example shows that the weights trained with failure matches the weight trained without failure,
thus the training has been properly resumed whilst being fully reproducible.
Used PyTorch 1.7.1.
"""
import os
import random as python_random
from argparse import ArgumentParser
from time import sleep
import numpy as np
import torch
from torch.utils.data import DataLoader, Dataset
from pytorch_lightning import _logger as log
from pytorch_lightning import LightningModule, seed_everything, Trainer
class RandomGetItemDataset(Dataset):
"""A dataset with random elements generated using global rng from torch, numpy and python."""
def __init__(self, length, size):
self.size = size
self.len = length
def __getitem__(self, index):
t = torch.rand(self.size)
n = torch.from_numpy(np.random.rand(self.size))
p = torch.tensor([python_random.random() for _ in range(self.size)])
sample = (index + (t + n + p) / 10).float()
return sample
def __len__(self):
return self.len
class SimpleMLP(LightningModule):
def __init__(self, fail_on_step: int = -1):
super().__init__()
self.layer = torch.nn.Linear(1, 2)
self.seen_batches = []
self.fail_on_step = fail_on_step
def training_step(self, batch, batch_idx):
if self.global_step == self.fail_on_step:
log.info(
f"READY TO BE KILLED WITH SIGTERM SIGNAL. " f"Run `kill -SIGTERM {os.getpid()}` in another terminal."
)
# this line is used to wait for you to send the signal to exit gracefully.
while not self.trainer._terminate_gracefully:
sleep(0.1)
batch = batch["data"] if isinstance(batch, dict) else batch
self.seen_batches.append(torch.stack(batch) if isinstance(batch, list) else batch)
loss = sum(self.layer(b).sum() for b in batch)
return loss
def configure_optimizers(self):
return torch.optim.SGD(self.layer.parameters(), lr=0.1)
def train_dataloader(self):
return DataLoader(RandomGetItemDataset(3, 1))
def _run_training(default_root_dir=".", max_epochs=3, fail_on_step: int = -1, ckpt_path=None):
model = SimpleMLP(fail_on_step=fail_on_step)
trainer = Trainer(default_root_dir=default_root_dir, max_epochs=max_epochs)
trainer.fit(model, ckpt_path=ckpt_path)
return model.seen_batches, model.parameters()
def main(args):
seed_everything(42)
os.environ["PL_FAULT_TOLERANT_TRAINING"] = "automatic" # active fault tolerant automatic
ckpt_path = ".pl_auto_save.ckpt"
auto_restart_ckpt_path_exists = os.path.exists(ckpt_path)
if args.emulate_kill_signal:
fail_on_step = -1 if auto_restart_ckpt_path_exists else 4
completed_batches = 4 if auto_restart_ckpt_path_exists else 5
else:
fail_on_step = -1
completed_batches = 9
complete_batches, weights = _run_training(fail_on_step=fail_on_step)
assert len(complete_batches) == completed_batches
if not auto_restart_ckpt_path_exists and args.emulate_kill_signal:
assert os.path.exists(ckpt_path)
if auto_restart_ckpt_path_exists or not args.emulate_kill_signal:
log.info([w for w in weights])
if __name__ == "__main__":
parser = ArgumentParser(description="Fault Tolerant Under Signal Example")
parser.add_argument(
"--emulate_kill_signal",
action="store_true",
help="Whether you should gracefully kill the process with a `SIGTERM` signal.",
)
main(parser.parse_args())