forked from facebookresearch/faiss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Clustering.cpp
230 lines (178 loc) · 6.38 KB
/
Clustering.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
/**
* Copyright (c) 2015-present, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the BSD+Patents license found in the
* LICENSE file in the root directory of this source tree.
*/
/* Copyright 2004-present Facebook. All Rights Reserved.
kmeans clustering routines
*/
#include "Clustering.h"
#include <cmath>
#include <cstdio>
#include <cstring>
#include "utils.h"
#include "FaissAssert.h"
#include "IndexFlat.h"
namespace faiss {
ClusteringParameters::ClusteringParameters ():
niter(25),
nredo(1),
verbose(false), spherical(false),
update_index(false),
frozen_centroids(false),
min_points_per_centroid(39),
max_points_per_centroid(256),
seed(1234)
{}
// 39 corresponds to 10000 / 256 -> to avoid warnings on PQ tests with randu10k
Clustering::Clustering (int d, int k):
d(d), k(k) {}
Clustering::Clustering (int d, int k, const ClusteringParameters &cp):
ClusteringParameters (cp), d(d), k(k) {}
static double imbalance_factor (int n, int k, long *assign) {
std::vector<int> hist(k, 0);
for (int i = 0; i < n; i++)
hist[assign[i]]++;
double tot = 0, uf = 0;
for (int i = 0 ; i < k ; i++) {
tot += hist[i];
uf += hist[i] * (double) hist[i];
}
uf = uf * k / (tot * tot);
return uf;
}
void Clustering::train (idx_t nx, const float *x_in, Index & index) {
FAISS_THROW_IF_NOT_MSG (nx >= k,
"need at least as many training points as clusters");
double t0 = getmillisecs();
// yes it is the user's responsibility, but it may spare us some
// hard-to-debug reports.
for (size_t i = 0; i < nx * d; i++) {
FAISS_THROW_IF_NOT_MSG (finite (x_in[i]),
"input contains NaN's or Inf's");
}
const float *x = x_in;
ScopeDeleter<float> del1;
if (nx > k * max_points_per_centroid) {
if (verbose)
printf("Sampling a subset of %ld / %ld for training\n",
k * max_points_per_centroid, nx);
std::vector<int> perm (nx);
rand_perm (perm.data (), nx, seed);
nx = k * max_points_per_centroid;
float * x_new = new float [nx * d];
for (idx_t i = 0; i < nx; i++)
memcpy (x_new + i * d, x + perm[i] * d, sizeof(x_new[0]) * d);
x = x_new;
del1.set (x);
} else if (nx < k * min_points_per_centroid) {
fprintf (stderr,
"WARNING clustering %ld points to %ld centroids: "
"please provide at least %ld training points\n",
nx, k, idx_t(k) * min_points_per_centroid);
}
if (verbose)
printf("Clustering %d points in %ldD to %ld clusters, "
"redo %d times, %d iterations\n",
int(nx), d, k, nredo, niter);
idx_t * assign = new idx_t[nx];
ScopeDeleter<idx_t> del (assign);
float * dis = new float[nx];
ScopeDeleter<float> del2(dis);
// for redo
float best_err = 1e50;
std::vector<float> best_obj;
std::vector<float> best_centroids;
// support input centroids
FAISS_THROW_IF_NOT_MSG (
centroids.size() % d == 0,
"size of provided input centroids not a multiple of dimension");
size_t n_input_centroids = centroids.size() / d;
if (verbose && n_input_centroids > 0) {
printf (" Using %zd centroids provided as input (%sfrozen)\n",
n_input_centroids, frozen_centroids ? "" : "not ");
}
double t_search_tot = 0;
if (verbose) {
printf(" Preprocessing in %.2f s\n",
(getmillisecs() - t0)/1000.);
}
t0 = getmillisecs();
for (int redo = 0; redo < nredo; redo++) {
if (verbose && nredo > 1) {
printf("Outer iteration %d / %d\n", redo, nredo);
}
// initialize remaining centroids with random points from the dataset
centroids.resize (d * k);
std::vector<int> perm (nx);
rand_perm (perm.data(), nx, seed + 1 + redo * 15486557L);
for (int i = n_input_centroids; i < k ; i++)
memcpy (¢roids[i * d], x + perm[i] * d,
d * sizeof (float));
if (spherical)
fvec_renorm_L2 (d, k, centroids.data());
if (!index.is_trained)
index.train (k, centroids.data());
FAISS_THROW_IF_NOT (index.ntotal == 0);
index.add (k, centroids.data());
float err = 0;
for (int i = 0; i < niter; i++) {
double t0s = getmillisecs();
index.search (nx, x, 1, dis, assign);
t_search_tot += getmillisecs() - t0s;
err = 0;
for (int j = 0; j < nx; j++)
err += dis[j];
obj.push_back (err);
int nsplit = km_update_centroids (
x, centroids.data(),
assign, d, k, nx, frozen_centroids ? n_input_centroids : 0);
if (verbose) {
printf (" Iteration %d (%.2f s, search %.2f s): "
"objective=%g imbalance=%.3f nsplit=%d \r",
i, (getmillisecs() - t0) / 1000.0,
t_search_tot / 1000,
err, imbalance_factor (nx, k, assign),
nsplit);
fflush (stdout);
}
if (spherical)
fvec_renorm_L2 (d, k, centroids.data());
index.reset ();
if (update_index)
index.train (k, centroids.data());
assert (index.ntotal == 0);
index.add (k, centroids.data());
}
if (verbose) printf("\n");
if (nredo > 1) {
if (err < best_err) {
if (verbose)
printf ("Objective improved: keep new clusters\n");
best_centroids = centroids;
best_obj = obj;
best_err = err;
}
index.reset ();
}
}
if (nredo > 1) {
centroids = best_centroids;
obj = best_obj;
}
}
float kmeans_clustering (size_t d, size_t n, size_t k,
const float *x,
float *centroids)
{
Clustering clus (d, k);
clus.verbose = d * n * k > (1L << 30);
// display logs if > 1Gflop per iteration
IndexFlatL2 index (d);
clus.train (n, x, index);
memcpy(centroids, clus.centroids.data(), sizeof(*centroids) * d * k);
return clus.obj.back();
}
} // namespace faiss