-
Notifications
You must be signed in to change notification settings - Fork 35
/
copying_problem.py
205 lines (162 loc) · 6.96 KB
/
copying_problem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
"""
Basic example of usage of GeoTorch
Implements a constrained RNN to learn a synthetic regression problem which asks to recall
some inputs and output them. From a dictionary of 9 numbers, the input-output looks like follows:
Input: 14221----------:----
Output: ---------------14221
This class should converge to 0% error. When at 0% error, sometimes there are some instabilities.
The GeoTorch code happens in `ExpRNNCell.__init__`, `ExpRNNCell.reset_parameters` and line 107.
The rest of the code is normal PyTorch.
Lines 146-167 shows how to assign different learning rates to parametrized weights.
This file also implements in lines 152 and 180 Riemannian Gradient Descent (RGD). As shown, RGD
dynamics account for using SGD as the optimizer calling `update_basis()` after every optization step.
"""
import torch
from torch import nn
import torch.nn.functional as F
import geotorch
batch_size = 128
hidden_size = 190
iterations = 4000 # Training iterations
L = 1000 # Length of sequence before asking to remember
S = 10 # Length of sequence to remember
alphabet_size = 8
lr = 1e-3
lr_orth = 2e-4
device = torch.device("cuda")
# When RGD == True we perform Riemannian gradient descent
# This is to demonstrate how one may implement RGD with
# just one extra line of code.
# RGD does not perform very well in these problems though.
RGD = False
if RGD:
print(
"Optimizing using RGD. The perfomance will be _much_ worse than with Adam or RMSprop."
)
class modrelu(nn.Module):
def __init__(self, features):
super(modrelu, self).__init__()
self.features = features
self.b = nn.Parameter(torch.Tensor(self.features))
self.reset_parameters()
def reset_parameters(self):
self.b.data.uniform_(-0.01, 0.01)
def forward(self, inputs):
norm = torch.abs(inputs)
biased_norm = norm + self.b
magnitude = nn.functional.relu(biased_norm)
phase = torch.sign(inputs)
return phase * magnitude
class ExpRNNCell(nn.Module):
def __init__(self, input_size, hidden_size):
super(ExpRNNCell, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.recurrent_kernel = nn.Linear(hidden_size, hidden_size, bias=False)
self.input_kernel = nn.Linear(input_size, hidden_size)
self.nonlinearity = modrelu(hidden_size)
# Make recurrent_kernel orthogonal
geotorch.orthogonal(self.recurrent_kernel, "weight")
self.reset_parameters()
def reset_parameters(self):
nn.init.kaiming_normal_(self.input_kernel.weight.data, nonlinearity="relu")
# The manifold class is under `layer.parametrizations.tensor_name[0]`
M = self.recurrent_kernel.parametrizations.weight[0]
# Every manifold has a convenience sample method, but you can use your own initializer
self.recurrent_kernel.weight = M.sample("torus")
def default_hidden(self, input_):
return input_.new_zeros(input_.size(0), self.hidden_size, requires_grad=False)
def forward(self, input_, hidden):
input_ = self.input_kernel(input_)
hidden = self.recurrent_kernel(hidden)
out = input_ + hidden
return self.nonlinearity(out)
class Model(nn.Module):
def __init__(self, alphabet_size, hidden_size):
super(Model, self).__init__()
self.hidden_size = hidden_size
self.rnn = ExpRNNCell(alphabet_size + 2, hidden_size)
self.lin = nn.Linear(hidden_size, alphabet_size + 1)
self.loss_func = nn.CrossEntropyLoss()
self.reset_parameters()
def reset_parameters(self):
nn.init.kaiming_normal_(self.lin.weight.data, nonlinearity="relu")
nn.init.constant_(self.lin.bias.data, 0)
def forward(self, inputs):
out_rnn = self.rnn.default_hidden(inputs[:, 0, ...])
outputs = []
with geotorch.parametrize.cached():
for input in torch.unbind(inputs, dim=1):
out_rnn = self.rnn(input, out_rnn)
outputs.append(self.lin(out_rnn))
return torch.stack(outputs, dim=1)
def loss(self, logits, y):
return self.loss_func(logits.view(-1, 9), y.view(-1))
def accuracy(self, logits, y):
return torch.eq(torch.argmax(logits, dim=2), y).float().mean()
def copy_data(batch_size):
# Generates some random synthetic data
# Example of input-output sequence
# 14221----------:----
# ---------------14221
# Numbers go from 1 to 8
# We generate S of them and we have to recall them
# L is the waiting between the last number and the
# signal to start outputting the numbers
# We codify `-` as a 0 and `:` as a 9.
seq = torch.randint(
1, alphabet_size + 1, (batch_size, S), dtype=torch.long, device=device
)
zeros1 = torch.zeros((batch_size, L), dtype=torch.long, device=device)
zeros2 = torch.zeros((batch_size, S - 1), dtype=torch.long, device=device)
zeros3 = torch.zeros((batch_size, S + L), dtype=torch.long, device=device)
marker = torch.full(
(batch_size, 1), alphabet_size + 1, dtype=torch.long, device=device
)
x = torch.cat([seq, zeros1, marker, zeros2], dim=1)
y = torch.cat([zeros3, seq], dim=1)
return x, y
def main():
model = Model(alphabet_size, hidden_size).to(device)
p_orth = model.rnn.recurrent_kernel
orth_params = p_orth.parameters()
non_orth_params = (
p for p in model.parameters() if p not in set(p_orth.parameters())
)
if RGD:
# Implement Stochstic Riemannian Gradient Descent via SGD
optim = torch.optim.SGD(
[{"params": non_orth_params}, {"params": orth_params, "lr": lr_orth}], lr=lr
)
else:
# These recurrent models benefit of slightly larger mixing constants
# on the adaptive term. They also work with beta_2 = 0.999, but they
# give better results with beta_2 \in [0.9, 0.99]
optim = torch.optim.Adam(
[
{"params": non_orth_params},
{"params": orth_params, "lr": lr_orth, "betas": (0.9, 0.95)},
],
lr=lr,
)
model.train()
for step in range(iterations):
batch_x, batch_y = copy_data(batch_size)
x_onehot = F.one_hot(batch_x, num_classes=alphabet_size + 2).float()
logits = model(x_onehot)
loss = model.loss(logits, batch_y)
optim.zero_grad()
loss.backward()
optim.step()
if RGD:
# Updating the base after every step and using SGD gives us
# Riemannian Gradient Descent. More on this in Section 5
# https://arxiv.org/abs/1909.09501
geotorch.update_base(model.rnn.recurrent_kernel, "weight")
with torch.no_grad():
accuracy = model.accuracy(logits, batch_y)
print("Iter {} Loss: {:.6f}, Accuracy: {:.5f}".format(step, loss, accuracy))
# The evaluation in this model is not quite necessary, as we do not repeat any
# element of the training batch
if __name__ == "__main__":
main()