-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompute_metric.py
201 lines (168 loc) · 6.37 KB
/
compute_metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
"""
Created on Thu Mar 31 18:10:52 2022
adapted form https://github.com/stardist/stardist/blob/master/stardist/matching.py
Thanks the authors of Stardist for sharing the great code
"""
import argparse
import numpy as np
from numba import jit
from scipy.optimize import linear_sum_assignment
from collections import OrderedDict
import pandas as pd
from skimage import segmentation
import tifffile as tif
import os
join = os.path.join
from tqdm import tqdm
def _intersection_over_union(masks_true, masks_pred):
""" intersection over union of all mask pairs
Parameters
------------
masks_true: ND-array, int
ground truth masks, where 0=NO masks; 1,2... are mask labels
masks_pred: ND-array, int
predicted masks, where 0=NO masks; 1,2... are mask labels
"""
overlap = _label_overlap(masks_true, masks_pred)
n_pixels_pred = np.sum(overlap, axis=0, keepdims=True)
n_pixels_true = np.sum(overlap, axis=1, keepdims=True)
iou = overlap / (n_pixels_pred + n_pixels_true - overlap)
iou[np.isnan(iou)] = 0.0
return iou
@jit(nopython=True)
def _label_overlap(x, y):
""" fast function to get pixel overlaps between masks in x and y
Parameters
------------
x: ND-array, int
where 0=NO masks; 1,2... are mask labels
y: ND-array, int
where 0=NO masks; 1,2... are mask labels
Returns
------------
overlap: ND-array, int
matrix of pixel overlaps of size [x.max()+1, y.max()+1]
"""
x = x.ravel()
y = y.ravel()
# preallocate a 'contact map' matrix
overlap = np.zeros((1+x.max(),1+y.max()), dtype=np.uint)
# loop over the labels in x and add to the corresponding
# overlap entry. If label A in x and label B in y share P
# pixels, then the resulting overlap is P
# len(x)=len(y), the number of pixels in the whole image
for i in range(len(x)):
overlap[x[i],y[i]] += 1
return overlap
def _true_positive(iou, th):
""" true positive at threshold th
Parameters
------------
iou: float, ND-array
array of IOU pairs
th: float
threshold on IOU for positive label
Returns
------------
tp: float
number of true positives at threshold
"""
n_min = min(iou.shape[0], iou.shape[1])
costs = -(iou >= th).astype(float) - iou / (2*n_min)
true_ind, pred_ind = linear_sum_assignment(costs)
match_ok = iou[true_ind, pred_ind] >= th
tp = match_ok.sum()
return tp
def eval_tp_fp_fn(masks_true, masks_pred, threshold=0.5):
num_inst_gt = np.max(masks_true)
num_inst_seg = np.max(masks_pred)
if num_inst_seg>0:
iou = _intersection_over_union(masks_true, masks_pred)[1:, 1:]
# for k,th in enumerate(threshold):
tp = _true_positive(iou, threshold)
fp = num_inst_seg - tp
fn = num_inst_gt - tp
else:
print('No segmentation results!')
tp = 0
fp = 0
fn = 0
return tp, fp, fn
def remove_boundary_cells(mask):
W, H = mask.shape
bd = np.ones((W, H))
bd[2:W-2, 2:H-2] = 0
bd_cells = np.unique(mask*bd)
for i in bd_cells[1:]:
mask[mask==i] = 0
new_label,_,_ = segmentation.relabel_sequential(mask)
return new_label
def main():
parser = argparse.ArgumentParser('Compute F1 score for cell segmentation results', add_help=False)
# Dataset parameters
parser.add_argument('--gt_path', type=str, help='path to ground truth; file names end with _label.tiff', required=True)
parser.add_argument('--seg_path', type=str, help='path to segmentation results; file names are the same as ground truth', required=True)
parser.add_argument('--save_path', default='./', help='path where to save metrics')
args = parser.parse_args()
gt_path = args.gt_path
seg_path = args.seg_path
names = sorted(os.listdir(seg_path))
seg_metric = OrderedDict()
seg_metric['Names'] = []
seg_metric['F1_Score'] = []
for name in tqdm(names):
assert name.endswith('_label.tiff'), 'The suffix of label name should be _label.tiff'
# Load the images for this case
gt = tif.imread(join(gt_path, name))
seg = tif.imread(join(seg_path, name))
# Score the cases
# do not consider cells on the boundaries during evaluation
if np.prod(gt.shape)<25000000:
gt = remove_boundary_cells(gt.astype(np.int32))
seg = remove_boundary_cells(seg.astype(np.int32))
tp, fp, fn = eval_tp_fp_fn(gt, seg, threshold=0.5)
else: # for large images (>5000x5000), the F1 score is computed by a patch-based way
H, W = gt.shape
roi_size = 2000
if H % roi_size != 0:
n_H = H // roi_size + 1
new_H = roi_size * n_H
else:
n_H = H // roi_size
new_H = H
if W % roi_size != 0:
n_W = W // roi_size + 1
new_W = roi_size * n_W
else:
n_W = W // roi_size
new_W = W
gt_pad = np.zeros((new_H, new_W), dtype=gt.dtype)
seg_pad = np.zeros((new_H, new_W), dtype=gt.dtype)
gt_pad[:H, :W] = gt
seg_pad[:H, :W] = seg
tp = 0
fp = 0
fn = 0
for i in range(n_H):
for j in range(n_W):
gt_roi = remove_boundary_cells(gt_pad[roi_size*i:roi_size*(i+1), roi_size*j:roi_size*(j+1)])
seg_roi = remove_boundary_cells(seg_pad[roi_size*i:roi_size*(i+1), roi_size*j:roi_size*(j+1)])
tp_i, fp_i, fn_i = eval_tp_fp_fn(gt_roi, seg_roi, threshold=0.5)
tp += tp_i
fp += fp_i
fn += fn_i
if tp == 0:
precision = 0
recall = 0
f1 = 0
else:
precision = tp / (tp + fp)
recall = tp / (tp + fn)
f1 = 2*(precision * recall)/ (precision + recall)
seg_metric['Names'].append(name)
seg_metric['F1_Score'].append(np.round(f1, 4))
seg_metric_df = pd.DataFrame(seg_metric)
seg_metric_df.to_csv(join(args.save_path, 'seg_metric.csv'), index=False)
print('mean F1 Score:', np.mean(seg_metric['F1_Score']))
if __name__ == '__main__':
main()