-
Notifications
You must be signed in to change notification settings - Fork 2
/
gcea_default_settings.m
50 lines (33 loc) · 1.53 KB
/
gcea_default_settings.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
function [default_opt] = gcea_default_settings()
%function [] = gcea_default_settings()
%% default settings -------------------------------------------------------
% choose categories
default_opt.categories_select = [];
% filter categories by size (number of genes; [min, max])
default_opt.size_filter = [1, inf];
% nr of category null samples to compute
default_opt.n_category_nulls = 1000;
% what type of correlation to use for phenotype x gene correlations
% ('Pearson', 'Spearman')
default_opt.correlation_method = 'Spearman';
% rescale weights? (default to no)
%if ~isfield(gcea_opt, 'weights_rescale'); gcea_opt.weights_rescale = false; end
% threshold gene weights at quantile? (default to no)
default_opt.weights_quant = [];
% threshold gene weights at value? (default to no)
default_opt.weights_thresh = [];
% binarize gene weights? (default to no)
default_opt.weights_cutoff = false;
% remove genes that co-occurre in >= gene_coocc_thresh * 100% of categories?
% (default to 1 -> will remove genes existing in every category)
default_opt.gene_coocc_thresh = 1;
% how to aggregate scores within a category ('mean', 'absmean', 'median',
% 'absmedian', 'weightedmean', 'absweightedmean')
default_opt.aggregation_method = 'weightedmean';
% higher or lower scores are 'better' (compute p-value from right or left tail)
default_opt.p_tail = 'right';
% significance threshold for categories (only for display)
default_opt.p_thresh = 0.05;
% print gene counts for every single gene category
default_opt.verbose_cat = false;
end