-
Notifications
You must be signed in to change notification settings - Fork 1
/
adabayesfp.py
105 lines (84 loc) · 4.18 KB
/
adabayesfp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import math
import torch
from torch.optim.optimizer import Optimizer
class AdaBayesFP(Optimizer):
r"""Implements AdaBayes Fixed Point algorithm (https://arxiv.org/abs/1807.07540; NeurIPS 2020)
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): analogous to Adam learning rate (default: 1e-3). In the high-data limit, converges to Adam(W) with this learning rate.
lr_sgd (float, optional): analogous to SGD learning rate (default: 1e-1). In the low-data limit, converges to SGD with this learning rate.
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
weight_drift (float, optional): Decoupled weight decay
batch_size: The batch size. Necessary for correct normalization.
Note:
Assumes that the loss is the mean loss, averaged over the minibatch
"""
def __init__(self,
params,
lr=1E-3,
lr_sgd=1E-1,
betas=(0.9, 0.999),
eps=1e-8,
weight_drift=5E-5,
batch_size=1):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= lr_sgd:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
defaults = dict(lr=lr, lr_sgd=lr_sgd, lr_ratio=lr_sgd/lr, betas=betas, eps=eps,
weight_drift=weight_drift, weight_drift_ratio=weight_drift/lr,
batch_size=batch_size)
super().__init__(params, defaults)
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
grad.mul_(group['batch_size'])
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p.data)
#### Adam!
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
beta1, beta2 = group['betas']
state['step'] += 1
# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(1 - beta1, grad)
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
corrected_exp_avg_sq = exp_avg_sq.div(bias_correction2).add_(group['eps'])
#### Steady state Bayesian filtering
lr_sgd = group['lr'] * group['lr_ratio'] / group['batch_size']
sigma_2m2 = 0.5/lr_sgd
eta_m2 = 1/group['lr']**2
# inverse learning rate
lpost = corrected_exp_avg_sq.mul_(eta_m2).add_(sigma_2m2**2).sqrt_().add_(sigma_2m2)
p.data.addcdiv_(-1/bias_correction1, exp_avg, lpost)
if 0 != group['weight_drift']:
p.data.mul_(1-group['weight_drift'])
return loss