-
Notifications
You must be signed in to change notification settings - Fork 1
/
setup.sh
executable file
·59 lines (46 loc) · 1.44 KB
/
setup.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
##### Download repositories ##########################
#Make all Directories for the projects
mkdir GGCNN
mkdir DexNet2
mkdir DenseObjectNet
#Download GG-CNN
cd original_repos/GGCNN
git clone https://github.com/dougsm/ggcnn.git
conda activate ggcnn
pip install -r requirements.txt
#Download DexNet Family
cd ../DexNet2
git clone https://github.com/BerkeleyAutomation/gqcnn
conda activate dexnet2
pip install .
#Download DenseObjectNet
cd ../DenseObjectNet
git clone https://github.com/RobotLocomotion/pytorch-dense-correspondence
###### Configure Datasets ##########################
cd ../../Datasets
if [ ! -d "Jacquard" ]; then
# Download Here:
mkdir Jacquard
fi
if [ ! -d "Cornell" ]; then
# Download Here:
mkdir Cornell
fi
if [ ! -d "DexNet2" ]; then
# Download Here: https://berkeley.app.box.com/s/6mnb2bzi5zfa7qpwyn7uq5atb7vbztng/folder/40676204986
mkdir DexNet2
fi
if [ ! -d "DenseCorrespondence" ]; then
mkdir original_repos/DenseObjectNet/DenseCorrespondence
#TODO : Testar se o download do Dataset é melhor por wget ou o script python
#cd pytorch-dense-correspondence
#conda activate densecorrespondence
#python config/download_pdc_data.py config/dense_correspondence/dataset/composite/caterpillar_upright.yaml ~/MastersProject/
# wget -q https://data.csail.mit.edu/labelfusion/pdccompressed/evaluation_labeled_data_compressed.tar.gz
fi
if [ ! -d "EGAD!" ]; then
mkdir EGAD
fi
if [ ! -d "MYEGAD" ]; then
mkdir MYEGAD
fi