From b4c13914a753f5d73a0a590dd91d9210a98c05ac Mon Sep 17 00:00:00 2001 From: ShusenTang Date: Thu, 31 Oct 2019 21:14:08 +0800 Subject: [PATCH] add code 9.6 in d2lzh --- code/d2lzh_pytorch/utils.py | 52 +++++++++++++++++++++++++++++++++++++ 1 file changed, 52 insertions(+) diff --git a/code/d2lzh_pytorch/utils.py b/code/d2lzh_pytorch/utils.py index 0e1a4b32d..df56e1f4d 100644 --- a/code/d2lzh_pytorch/utils.py +++ b/code/d2lzh_pytorch/utils.py @@ -1028,6 +1028,58 @@ def MultiBoxDetection_one(c_p, l_p, anc, nms_threshold = 0.5): +# ################################# 9.6 ############################ +class PikachuDetDataset(torch.utils.data.Dataset): + """皮卡丘检测数据集类""" + def __init__(self, data_dir, part, image_size=(256, 256)): + assert part in ["train", "val"] + self.image_size = image_size + self.image_dir = os.path.join(data_dir, part, "images") + + with open(os.path.join(data_dir, part, "label.json")) as f: + self.label = json.load(f) + + self.transform = torchvision.transforms.Compose([ + # 将 PIL 图片转换成位于[0.0, 1.0]的floatTensor, shape (C x H x W) + torchvision.transforms.ToTensor()]) + + def __len__(self): + return len(self.label) + + def __getitem__(self, index): + image_path = str(index + 1) + ".png" + + cls = self.label[image_path]["class"] + label = np.array([cls] + self.label[image_path]["loc"], + dtype="float32")[None, :] + + PIL_img = Image.open(os.path.join(self.image_dir, image_path) + ).convert('RGB').resize(self.image_size) + img = self.transform(PIL_img) + + sample = { + "label": label, # shape: (1, 5) [class, xmin, ymin, xmax, ymax] + "image": img # shape: (3, *image_size) + } + + return sample + +def load_data_pikachu(batch_size, edge_size=256, data_dir = '../../data/pikachu'): + """edge_size:输出图像的宽和高""" + image_size = (edge_size, edge_size) + train_dataset = PikachuDetDataset(data_dir, 'train', image_size) + val_dataset = PikachuDetDataset(data_dir, 'val', image_size) + + + train_iter = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, + shuffle=True, num_workers=4) + + val_iter = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, + shuffle=False, num_workers=4) + return train_iter, val_iter + + + # ############################# 10.7 ########################## def read_imdb(folder='train', data_root="/S1/CSCL/tangss/Datasets/aclImdb"):