Skip to content

Latest commit

 

History

History
67 lines (50 loc) · 2.25 KB

README.md

File metadata and controls

67 lines (50 loc) · 2.25 KB

Radiology Report Generation with a Learned Knowledge Base and Multi-modal Alignment

基于自学习知识库和多模态对其机制的医学报告生成

Requirements

conda activate tencent

Data

Download IU and MIMIC-CXR datasets, and place them in data folder.

  • IU dataset from here
  • MIMIC-CXR dataset from here

Folder Structure

  • config : setup training arguments and data path
  • data : store IU and MIMIC dataset
  • models: basic model and all our models
  • modules:
    • the layer define of our model
    • dataloader
    • loss function
    • metrics
    • tokenizer
    • some utils
  • pycocoevalcap: Microsoft COCO Caption Evaluation Tools

Training and Testing

  • The validation and testing will run after training.
  • More options can be found in config/opts.py file.
  • The model will be trained using command:
    • $dataset_name:
      • iu: IU dataset
      • mimic: MIMIC dataset
    1. full model

      python main.py --cfg config/{$dataset_name}_resnet.yml --expe_name {$experiment name} --label_loss --rank_loss --version 12
      
    2. basic model

      python main_basic.py --cfg config/{$dataset_name}_resnet.yml --expe_name {$experiment name} --label_loss --rank_loss --version 91
      
    3. our model without the learned knowledge base

      python main.py --cfg config/{$dataset_name}_resnet.yml --expe_name {$experiment name} --label_loss --rank_loss --version 92
      
    4. for the model without multi-modal alignment You remove --label_loss or --rank_loss from the commonds.

Citation

Shuxin Yang, Xian Wu, Shen Ge, ZhuoZhao Zheng, S. Kevin Zhou, Li Xiao,Radiology Report Generation with a Learned Knowledge Base and Multi-modal Alignment. Medical Image Analysis,2023

Contact

If you have any problem with the code, please contact Shuxin Yang([email protected]) or Li Xiao([email protected]).