-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathmodels_mage.py
614 lines (494 loc) · 27.7 KB
/
models_mage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
from functools import partial
import torch
import torch.nn as nn
from timm.models.vision_transformer import PatchEmbed, DropPath, Mlp
from util.pos_embed import get_2d_sincos_pos_embed
from pixel_generator.mage.taming.models.vqgan import VQModel
from omegaconf import OmegaConf
import numpy as np
import scipy.stats as stats
import math
import pretrained_enc.models_pretrained_enc as models_pretrained_enc
from rdm.models.diffusion.ddim import DDIMSampler
from rdm.util import load_model
def mask_by_random_topk(mask_len, probs, temperature=1.0):
mask_len = mask_len.squeeze()
confidence = torch.log(probs) + torch.Tensor(temperature * np.random.gumbel(size=probs.shape)).cuda()
sorted_confidence, _ = torch.sort(confidence, axis=-1)
# Obtains cut off threshold given the mask lengths.
cut_off = sorted_confidence[:, mask_len.long()-1:mask_len.long()]
# Masks tokens with lower confidence.
masking = (confidence <= cut_off)
return masking
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
with torch.cuda.amp.autocast(enabled=False):
attn = (q.float() @ k.float().transpose(-2, -1)) * self.scale
attn = attn - torch.max(attn, dim=-1, keepdim=True)[0]
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x, attn
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x, return_attention=False):
if return_attention:
_, attn = self.attn(self.norm1(x))
return attn
else:
y, _ = self.attn(self.norm1(x))
x = x + self.drop_path(y)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class LabelSmoothingCrossEntropy(nn.Module):
""" NLL loss with label smoothing.
"""
def __init__(self, smoothing=0.1):
super(LabelSmoothingCrossEntropy, self).__init__()
assert smoothing < 1.0
self.smoothing = smoothing
self.confidence = 1. - smoothing
def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
logprobs = torch.nn.functional.log_softmax(x, dim=-1)
nll_loss = -logprobs.gather(dim=-1, index=target.unsqueeze(1))
nll_loss = nll_loss.squeeze(1)
smooth_loss = -logprobs.mean(dim=-1)
loss = self.confidence * nll_loss + self.smoothing * smooth_loss
return loss
class BertEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, vocab_size, hidden_size, max_position_embeddings, dropout=0.1):
super().__init__()
self.word_embeddings = nn.Embedding(vocab_size, hidden_size)
self.position_embeddings = nn.Embedding(max_position_embeddings, hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(hidden_size, eps=1e-6)
self.dropout = nn.Dropout(dropout)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer("position_ids", torch.arange(max_position_embeddings).expand((1, -1)))
torch.nn.init.normal_(self.word_embeddings.weight, std=.02)
torch.nn.init.normal_(self.position_embeddings.weight, std=.02)
def forward(
self, input_ids
):
input_shape = input_ids.size()
seq_length = input_shape[1]
position_ids = self.position_ids[:, :seq_length]
inputs_embeds = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
embeddings = inputs_embeds + position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class MlmLayer(nn.Module):
def __init__(self, feat_emb_dim, word_emb_dim, vocab_size):
super().__init__()
self.fc = nn.Linear(feat_emb_dim, word_emb_dim)
self.gelu = nn.GELU()
self.ln = nn.LayerNorm(word_emb_dim)
self.bias = nn.Parameter(torch.zeros(1, 1, vocab_size))
def forward(self, x, word_embeddings):
mlm_hidden = self.fc(x)
mlm_hidden = self.gelu(mlm_hidden)
mlm_hidden = self.ln(mlm_hidden)
word_embeddings = word_embeddings.transpose(0, 1)
logits = torch.matmul(mlm_hidden, word_embeddings)
logits = logits + self.bias
return logits
class MaskedGenerativeEncoderViT(nn.Module):
""" Masked Autoencoder with VisionTransformer backbone
"""
def __init__(self, img_size=256, patch_size=16, in_chans=3,
embed_dim=1024, depth=24, num_heads=16,
decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16,
mlp_ratio=4., norm_layer=nn.LayerNorm, norm_pix_loss=False,
mask_ratio_min=0.5, mask_ratio_max=1.0, mask_ratio_mu=0.55, mask_ratio_std=0.25,
vqgan_ckpt_path='vqgan_jax_strongaug.ckpt', use_rep=True, rep_dim=256,
rep_drop_prob=0.0,
use_class_label=False,
pretrained_enc_arch='mocov3_vit_base',
pretrained_enc_path='pretrained_enc_ckpts/mocov3/vitb.pth.tar',
pretrained_enc_proj_dim=256,
pretrained_enc_withproj=False,
pretrained_rdm_ckpt=None,
pretrained_rdm_cfg=None):
super().__init__()
assert not (use_rep and use_class_label)
# --------------------------------------------------------------------------
# VQGAN specifics
vqgan_config = OmegaConf.load('config/mage/vqgan.yaml').model
self.vqgan_cfg = vqgan_config
self.codebook_size = vqgan_config.params.n_embed
vocab_size = self.codebook_size + 1000 + 1 # 1024 codebook size, 1000 classes, 1 for mask token.
self.fake_class_label = self.codebook_size + 1100 - 1024
self.mask_token_label = vocab_size - 1
self.token_emb = BertEmbeddings(vocab_size=vocab_size,
hidden_size=embed_dim,
max_position_embeddings=256+1,
dropout=0.1)
self.use_rep = use_rep
self.use_class_label = use_class_label
if self.use_rep:
print("Use representation as condition!")
self.latent_prior_proj = nn.Linear(rep_dim, embed_dim, bias=True)
if self.use_class_label:
print("Use class label as condition!")
self.class_emb = nn.Embedding(1000, embed_dim)
# CFG config
self.rep_drop_prob = rep_drop_prob
self.fake_latent = nn.Parameter(torch.zeros(1, rep_dim))
torch.nn.init.normal_(self.fake_latent, std=.02)
# MAGE variant masking ratio
self.mask_ratio_min = mask_ratio_min
self.mask_ratio_generator = stats.truncnorm((mask_ratio_min - mask_ratio_mu) / mask_ratio_std,
(mask_ratio_max - mask_ratio_mu) / mask_ratio_std,
loc=mask_ratio_mu, scale=mask_ratio_std)
# --------------------------------------------------------------------------
# MAGE encoder specifics
dropout_rate = 0.1
self.patch_embed = PatchEmbed(img_size, patch_size, in_chans, embed_dim)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim), requires_grad=False) # fixed sin-cos embedding
self.blocks = nn.ModuleList([
Block(embed_dim, num_heads, mlp_ratio, qkv_bias=True, qk_scale=None, norm_layer=norm_layer,
drop=dropout_rate, attn_drop=dropout_rate)
for i in range(depth)])
self.norm = norm_layer(embed_dim)
# --------------------------------------------------------------------------
# --------------------------------------------------------------------------
# MAGE decoder specifics
self.decoder_embed = nn.Linear(embed_dim, decoder_embed_dim, bias=True)
self.mask_token = nn.Parameter(torch.zeros(1, 1, decoder_embed_dim))
self.pad_with_cls_token = True
self.decoder_pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, decoder_embed_dim), requires_grad=False) # fixed sin-cos embedding
self.decoder_pos_embed_learned = nn.Parameter(torch.zeros(1, num_patches + 1, decoder_embed_dim)) # learnable pos embedding
self.decoder_blocks = nn.ModuleList([
Block(decoder_embed_dim, decoder_num_heads, mlp_ratio, qkv_bias=True, qk_scale=None, norm_layer=norm_layer,
drop=dropout_rate, attn_drop=dropout_rate)
for i in range(decoder_depth)])
self.decoder_norm = norm_layer(decoder_embed_dim)
self.decoder_pred = nn.Linear(decoder_embed_dim, patch_size**2 * in_chans, bias=True) # decoder to patch
# --------------------------------------------------------------------------
# --------------------------------------------------------------------------
# MlmLayer
self.mlm_layer = MlmLayer(feat_emb_dim=decoder_embed_dim, word_emb_dim=embed_dim, vocab_size=vocab_size)
self.norm_pix_loss = norm_pix_loss
self.criterion = LabelSmoothingCrossEntropy(smoothing=0.1)
self.initialize_weights()
# --------------------------------------------------------------------------
# Load pre-trained encoder
assert pretrained_enc_path is not None
self.pretrained_encoder = models_pretrained_enc.__dict__[pretrained_enc_arch](proj_dim=pretrained_enc_proj_dim)
# load pre-trained encoder parameters
if 'moco' in pretrained_enc_arch:
self.pretrained_encoder = models_pretrained_enc.load_pretrained_moco(self.pretrained_encoder,
pretrained_enc_path)
elif 'dino' in pretrained_enc_arch:
self.pretrained_encoder = models_pretrained_enc.load_pretrained_dino(self.pretrained_encoder,
pretrained_enc_path)
elif 'ibot' in pretrained_enc_arch:
self.pretrained_encoder = models_pretrained_enc.load_pretrained_ibot(self.pretrained_encoder,
pretrained_enc_path)
elif 'deit' in pretrained_enc_arch:
self.pretrained_encoder = models_pretrained_enc.load_pretrained_deit(self.pretrained_encoder,
pretrained_enc_path)
else:
raise NotImplementedError
for param in self.pretrained_encoder.parameters():
param.requires_grad = False
self.pretrained_enc_withproj = pretrained_enc_withproj
# --------------------------------------------------------------------------
# Load pre-trained RDM sampler
if pretrained_rdm_ckpt is not None and pretrained_rdm_cfg is not None:
rdm_config = OmegaConf.load(pretrained_rdm_cfg)
self.rdm_fake_class_label = rdm_config.model.params.cond_stage_config.params.n_classes - 1
rdm_model = load_model(rdm_config, pretrained_rdm_ckpt)
self.rdm_sampler = DDIMSampler(rdm_model)
else:
self.rdm_fake_class_label = 0
# --------------------------------------------------------------------------
# Load pre-trained VQGAN
self.vqgan = VQModel(ddconfig=vqgan_config.params.ddconfig,
n_embed=vqgan_config.params.n_embed,
embed_dim=vqgan_config.params.embed_dim,
ckpt_path=vqgan_ckpt_path)
for param in self.vqgan.parameters():
param.requires_grad = False
def initialize_weights(self):
# initialization
# initialize (and freeze) pos_embed by sin-cos embedding
pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.patch_embed.num_patches**.5), cls_token=True)
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
decoder_pos_embed = get_2d_sincos_pos_embed(self.decoder_pos_embed.shape[-1], int(self.patch_embed.num_patches**.5), cls_token=True)
self.decoder_pos_embed.data.copy_(torch.from_numpy(decoder_pos_embed).float().unsqueeze(0))
# initialize patch_embed like nn.Linear (instead of nn.Conv2d)
w = self.patch_embed.proj.weight.data
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
# timm's trunc_normal_(std=.02) is effectively normal_(std=0.02) as cutoff is too big (2.)
torch.nn.init.normal_(self.cls_token, std=.02)
torch.nn.init.normal_(self.mask_token, std=.02)
torch.nn.init.normal_(self.decoder_pos_embed_learned, std=.02)
# initialize nn.Linear and nn.LayerNorm
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
# we use xavier_uniform following official JAX ViT:
torch.nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward_encoder(self, x, rep, class_label):
# tokenization
with torch.no_grad():
z_q, _, token_tuple = self.vqgan.encode(x)
_, _, token_indices = token_tuple
token_indices = token_indices.reshape(z_q.size(0), -1)
gt_indices = token_indices.clone().detach().long()
# masking
bsz, seq_len = token_indices.size()
mask_ratio_min = self.mask_ratio_min
mask_rate = self.mask_ratio_generator.rvs(1)[0]
num_dropped_tokens = int(np.ceil(seq_len * mask_ratio_min))
num_masked_tokens = int(np.ceil(seq_len * mask_rate))
# it is possible that two elements of the noise is the same, so do a while loop to avoid it
while True:
noise = torch.rand(bsz, seq_len, device=x.device) # noise in [0, 1]
sorted_noise, _ = torch.sort(noise, dim=1) # ascend: small is remove, large is keep
cutoff_drop = sorted_noise[:, num_dropped_tokens-1:num_dropped_tokens]
cutoff_mask = sorted_noise[:, num_masked_tokens-1:num_masked_tokens]
token_drop_mask = (noise <= cutoff_drop).float()
token_all_mask = (noise <= cutoff_mask).float()
if token_drop_mask.sum() == bsz*num_dropped_tokens and token_all_mask.sum() == bsz*num_masked_tokens:
break
else:
print("Rerandom the noise!")
# print(mask_rate, num_dropped_tokens, num_masked_tokens, token_drop_mask.sum(dim=1), token_all_mask.sum(dim=1))
token_indices[token_all_mask.nonzero(as_tuple=True)] = self.mask_token_label
# print("Masekd num token:", torch.sum(token_indices == self.mask_token_label, dim=1))
# concate class token
token_indices = torch.cat([torch.zeros(token_indices.size(0), 1).cuda(device=token_indices.device), token_indices], dim=1)
token_indices[:, 0] = self.fake_class_label
token_drop_mask = torch.cat([torch.zeros(token_indices.size(0), 1).cuda(), token_drop_mask], dim=1)
token_all_mask = torch.cat([torch.zeros(token_indices.size(0), 1).cuda(), token_all_mask], dim=1)
token_indices = token_indices.long()
# bert embedding
input_embeddings = self.token_emb(token_indices)
# print("Input embedding shape:", input_embeddings.shape)
bsz, seq_len, emb_dim = input_embeddings.shape
# dropping
token_keep_mask = 1 - token_drop_mask
input_embeddings_after_drop = input_embeddings[token_keep_mask.nonzero(as_tuple=True)].reshape(bsz, -1, emb_dim)
# print("Input embedding after drop shape:", input_embeddings_after_drop.shape)
# replace fake class token with rep
if self.use_rep:
# cfg by masking representation
drop_rep_mask = torch.rand(bsz) < self.rep_drop_prob
drop_rep_mask = drop_rep_mask.unsqueeze(-1).cuda().float()
rep = drop_rep_mask * self.fake_latent + (1 - drop_rep_mask) * rep
rep = self.latent_prior_proj(rep)
input_embeddings_after_drop[:, 0] = rep
# class-conditional MAGE
if self.use_class_label:
class_emb = self.class_emb(class_label)
input_embeddings_after_drop[:, 0] = class_emb
# apply Transformer blocks
x = input_embeddings_after_drop
for blk in self.blocks:
x = blk(x)
x = self.norm(x)
# print("Encoder representation shape:", x.shape)
return x, gt_indices, token_drop_mask, token_all_mask
def forward_decoder(self, x, token_drop_mask, token_all_mask):
# embed tokens
x = self.decoder_embed(x)
# append mask tokens to sequence
if self.pad_with_cls_token:
mask_tokens = x[:, 0:1].repeat(1, token_all_mask.shape[1], 1)
else:
mask_tokens = self.mask_token.repeat(token_all_mask.shape[0], token_all_mask.shape[1], 1)
# put undropped tokens into original sequence
x_after_pad = mask_tokens.clone()
x_after_pad[(1 - token_drop_mask).nonzero(as_tuple=True)] = x.reshape(x.shape[0] * x.shape[1], x.shape[2])
# set undropped but masked positions with mask
x_after_pad = torch.where(token_all_mask.unsqueeze(-1).bool(), mask_tokens, x_after_pad)
# add pos embed
x = x_after_pad + self.decoder_pos_embed_learned
# apply Transformer blocks
for blk in self.decoder_blocks:
x = blk(x)
x = self.decoder_norm(x)
word_embeddings = self.token_emb.word_embeddings.weight.data.detach()
x = self.mlm_layer(x, word_embeddings)
# print("Logits shape:", x.shape)
return x
def normalize(self, x):
return (x - torch.mean(x, dim=1, keepdim=True)) / torch.std(x, dim=1, keepdim=True)
def forward_loss(self, gt_indices, logits, mask):
bsz, seq_len = gt_indices.size()
# logits and mask are with seq_len+1 but gt_indices is with seq_len
loss = self.criterion(logits[:, 1:, :self.codebook_size].reshape(bsz*seq_len, -1), gt_indices.reshape(bsz*seq_len))
loss = loss.reshape(bsz, seq_len)
loss = (loss * mask[:, 1:]).sum() / mask[:, 1:].sum() # mean loss on removed patches
return loss
def forward(self, imgs, class_label,
gen_image=False, bsz=None, num_iter=None, choice_temperature=None,
sampled_rep=None, rdm_steps=250, eta=1.0, cfg=0.0, class_label_gen=None):
if gen_image:
return self.gen_image(bsz, num_iter, choice_temperature, sampled_rep, rdm_steps, eta, cfg, class_label_gen)
self.pretrained_encoder.eval()
with torch.no_grad():
mean = torch.Tensor([0.485, 0.456, 0.406]).cuda().unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
std = torch.Tensor([0.229, 0.224, 0.225]).cuda().unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
x_normalized = (imgs - mean) / std
x_normalized = torch.nn.functional.interpolate(x_normalized, 224, mode='bicubic')
rep = self.pretrained_encoder.forward_features(x_normalized)
if self.pretrained_enc_withproj:
rep = self.pretrained_encoder.head(rep)
rep_std = torch.std(rep, dim=1, keepdim=True)
rep_mean = torch.mean(rep, dim=1, keepdim=True)
rep = (rep - rep_mean) / rep_std
latent, gt_indices, token_drop_mask, token_all_mask = self.forward_encoder(imgs, rep, class_label)
logits = self.forward_decoder(latent, token_drop_mask, token_all_mask)
loss = self.forward_loss(gt_indices, logits, token_all_mask)
return loss, imgs, token_all_mask
def gen_image(self, bsz, num_iter=12, choice_temperature=4.5, sampled_rep=None, rdm_steps=250, eta=1.0,
cfg=0.0, class_label=None):
mask_token_id = self.mask_token_label
unknown_number_in_the_beginning = 256
_CONFIDENCE_OF_KNOWN_TOKENS = +np.inf
initial_token_indices = mask_token_id * torch.ones(bsz, unknown_number_in_the_beginning)
token_indices = initial_token_indices.cuda()
# Sample representation from RDM
if self.use_rep and sampled_rep is None:
with self.rdm_sampler.model.ema_scope("Plotting"):
shape = [self.rdm_sampler.model.model.diffusion_model.in_channels,
self.rdm_sampler.model.model.diffusion_model.image_size,
self.rdm_sampler.model.model.diffusion_model.image_size]
if self.rdm_sampler.model.class_cond:
cond = {"class_label": class_label}
else:
class_label = self.rdm_fake_class_label * torch.ones(bsz).cuda().long()
cond = {"class_label": class_label}
cond = self.rdm_sampler.model.get_learned_conditioning(cond)
sampled_rep, _ = self.rdm_sampler.sample(rdm_steps, conditioning=cond, batch_size=bsz,
shape=shape,
eta=eta, verbose=False)
sampled_rep = sampled_rep.squeeze(-1).squeeze(-1)
# add uncond for cfg
if cfg > 0:
uncond_rep = self.fake_latent.repeat(bsz, 1)
sampled_rep = torch.cat([sampled_rep, uncond_rep], dim=0)
else:
class_label = None
if self.use_class_label:
assert cfg == 0
class_label = torch.randint(0, 1000, (bsz,)).cuda()
# Parallel decoding of MAGE
for step in range(num_iter):
cur_ids = token_indices.clone().long()
# duplicate for cfg
if cfg > 0:
token_indices = torch.cat([token_indices, token_indices], dim=0)
token_indices = torch.cat(
[torch.zeros(token_indices.size(0), 1).cuda(device=token_indices.device), token_indices], dim=1)
token_indices[:, 0] = self.fake_class_label
token_indices = token_indices.long()
token_all_mask = token_indices == mask_token_id
token_drop_mask = torch.zeros_like(token_indices)
# token embedding
input_embeddings = self.token_emb(token_indices)
if self.use_rep:
input_embeddings[:, 0] = self.latent_prior_proj(sampled_rep)
if self.use_class_label:
class_prior = self.class_emb(class_label)
input_embeddings[:, 0] = class_prior
# encoder
x = input_embeddings
for blk in self.blocks:
x = blk(x)
x = self.norm(x)
# decoder
logits = self.forward_decoder(x, token_drop_mask, token_all_mask)
logits = logits[:, 1:, :self.codebook_size]
# cfg
if cfg > 0:
cond_logits = logits[:bsz]
neg_logits = logits[bsz:]
# linear increase cfg
cfg_iter = cfg * (step + 1) / num_iter
logits = cond_logits - cfg_iter * (neg_logits - cond_logits)
# get token prediction
sample_dist = torch.distributions.categorical.Categorical(logits=logits)
sampled_ids = sample_dist.sample()
# get ids for next step
unknown_map = (cur_ids == mask_token_id)
sampled_ids = torch.where(unknown_map, sampled_ids, cur_ids)
# Defines the mask ratio for the next round. The number to mask out is
# determined by mask_ratio * unknown_number_in_the_beginning.
ratio = 1. * (step + 1) / num_iter
mask_ratio = np.cos(math.pi / 2. * ratio)
# sample ids according to prediction confidence
probs = torch.nn.functional.softmax(logits, dim=-1)
selected_probs = torch.squeeze(
torch.gather(probs, dim=-1, index=torch.unsqueeze(sampled_ids, -1)), -1)
selected_probs = torch.where(unknown_map, selected_probs.double(), _CONFIDENCE_OF_KNOWN_TOKENS).float()
mask_len = torch.Tensor([np.floor(unknown_number_in_the_beginning * mask_ratio)]).cuda()
# Keeps at least one of prediction in this round and also masks out at least
# one and for the next iteration
mask_len = torch.maximum(torch.Tensor([1]).cuda(),
torch.minimum(torch.sum(unknown_map, dim=-1, keepdims=True) - 1, mask_len))
# Sample masking tokens for next iteration
masking = mask_by_random_topk(mask_len[0], selected_probs, choice_temperature * (1 - ratio))
# Masks tokens with lower confidence.
token_indices = torch.where(masking, mask_token_id, sampled_ids)
# vqgan visualization
z_q = self.vqgan.quantize.get_codebook_entry(sampled_ids, shape=(bsz, 16, 16, self.vqgan_cfg.params.embed_dim))
gen_images = self.vqgan.decode(z_q)
return gen_images, class_label
def mage_vit_base_patch16(**kwargs):
model = MaskedGenerativeEncoderViT(
patch_size=16, embed_dim=768, depth=12, num_heads=12,
decoder_embed_dim=768, decoder_depth=8, decoder_num_heads=16,
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
def mage_vit_large_patch16(**kwargs):
model = MaskedGenerativeEncoderViT(
patch_size=16, embed_dim=1024, depth=24, num_heads=16,
decoder_embed_dim=1024, decoder_depth=8, decoder_num_heads=16,
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
def mage_vit_huge_patch16(**kwargs):
model = MaskedGenerativeEncoderViT(
patch_size=16, embed_dim=1280, depth=32, num_heads=16,
decoder_embed_dim=1280, decoder_depth=8, decoder_num_heads=16,
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model