-
Notifications
You must be signed in to change notification settings - Fork 40
/
engine_mage.py
144 lines (118 loc) · 5.81 KB
/
engine_mage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import math
import sys
from typing import Iterable
import os
import torch
import util.misc as misc
import util.lr_sched as lr_sched
import cv2
import torch_fidelity
import numpy as np
import shutil
def train_one_epoch(model: torch.nn.Module,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, loss_scaler,
log_writer=None,
args=None):
model.train(True)
metric_logger = misc.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 20
accum_iter = args.accum_iter
optimizer.zero_grad()
if log_writer is not None:
print('log_dir: {}'.format(log_writer.log_dir))
for data_iter_step, (samples, class_label) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
# we use a per iteration (instead of per epoch) lr scheduler
if data_iter_step % accum_iter == 0:
lr_sched.adjust_learning_rate(optimizer, data_iter_step / len(data_loader) + epoch, args)
samples = samples.to(device, non_blocking=True)
with torch.cuda.amp.autocast():
loss, _, _ = model(samples, class_label)
loss_value = loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
loss /= accum_iter
loss_scaler(loss, optimizer, clip_grad=args.grad_clip, parameters=model.parameters(),
update_grad=(data_iter_step + 1) % accum_iter == 0)
if (data_iter_step + 1) % accum_iter == 0:
optimizer.zero_grad()
torch.cuda.synchronize()
metric_logger.update(loss=loss_value)
lr = optimizer.param_groups[0]["lr"]
metric_logger.update(lr=lr)
loss_value_reduce = misc.all_reduce_mean(loss_value)
if log_writer is not None and (data_iter_step + 1) % accum_iter == 0:
""" We use epoch_1000x as the x-axis in tensorboard.
This calibrates different curves when batch size changes.
"""
epoch_1000x = int((data_iter_step / len(data_loader) + epoch) * 1000)
log_writer.add_scalar('train_loss', loss_value_reduce, epoch_1000x)
log_writer.add_scalar('lr', lr, epoch_1000x)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
def gen_img(model, args, epoch, batch_size=16, log_writer=None, cfg=0.0):
model.eval()
num_steps = args.num_images // (batch_size * misc.get_world_size()) + 1
save_folder = os.path.join(args.output_dir, "steps{}-eta{}-temp{}-iter{}-cfg{}".format(args.rdm_steps, args.eta,
args.temp, args.num_iter,
cfg))
if misc.get_rank() == 0:
if not os.path.exists(save_folder):
os.makedirs(save_folder)
class_num = 1000
class_label_gen_world = np.arange(0, class_num).repeat(args.num_images // class_num)
class_label_gen_world = np.hstack([class_label_gen_world, np.zeros(10000)])
world_size = misc.get_world_size()
local_rank = misc.get_rank()
for i in range(num_steps):
print("Generation step {}/{}".format(i, num_steps))
class_label_gen = class_label_gen_world[world_size * batch_size * i + local_rank * batch_size:
world_size * batch_size * i + (local_rank + 1) * batch_size]
class_label_gen = torch.Tensor(class_label_gen).long().cuda()
with torch.no_grad():
gen_images_batch, _ = model(None, None,
gen_image=True, bsz=batch_size,
choice_temperature=args.temp,
num_iter=args.num_iter, sampled_rep=None,
rdm_steps=args.rdm_steps, eta=args.eta, cfg=cfg, class_label_gen=class_label_gen)
gen_images_batch = misc.concat_all_gather(gen_images_batch)
gen_images_batch = gen_images_batch.detach().cpu()
# save img
if misc.get_rank() == 0:
for b_id in range(gen_images_batch.size(0)):
if i*gen_images_batch.size(0)+b_id >= args.num_images:
break
gen_img = np.clip(gen_images_batch[b_id].numpy().transpose([1, 2, 0]) * 255, 0, 255)
gen_img = gen_img.astype(np.uint8)[:, :, ::-1]
cv2.imwrite(
os.path.join(save_folder, '{}.png'.format(str(i * gen_images_batch.size(0) + b_id).zfill(5))),
gen_img)
# compute FID and IS
if log_writer is not None:
print("Evaluating FID, IS...")
metrics_dict = torch_fidelity.calculate_metrics(
input1=save_folder,
input2='imagenet-val',
cuda=True,
isc=True,
fid=True,
kid=False,
prc=False,
verbose=False,
)
fid = metrics_dict['frechet_inception_distance']
inception_score = metrics_dict['inception_score_mean']
if cfg == 0:
log_writer.add_scalar('fid', fid, epoch)
log_writer.add_scalar('is', inception_score, epoch)
else:
log_writer.add_scalar('fid_cfg{}'.format(cfg), fid, epoch)
log_writer.add_scalar('is_cfg{}'.format(cfg), inception_score, epoch)
print("FID: {}, Inception Score: {}".format(fid, inception_score))
# remove temporal saving folder
shutil.rmtree(save_folder)