forked from PaddlePaddle/PaddleDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
operators.py
4064 lines (3526 loc) · 151 KB
/
operators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# function:
# operators to process sample,
# eg: decode/resize/crop image
from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
try:
from collections.abc import Sequence
except Exception:
from collections import Sequence
from numbers import Number, Integral
import uuid
import random
import math
import numpy as np
import os
import copy
import logging
import cv2
from PIL import Image, ImageDraw
import pickle
import threading
MUTEX = threading.Lock()
import paddle
from ppdet.core.workspace import serializable
from ..reader import Compose
from .op_helper import (satisfy_sample_constraint, filter_and_process,
generate_sample_bbox, clip_bbox, data_anchor_sampling,
satisfy_sample_constraint_coverage, crop_image_sampling,
generate_sample_bbox_square, bbox_area_sampling,
is_poly, get_border)
from ppdet.utils.logger import setup_logger
from ppdet.modeling.keypoint_utils import get_affine_transform, affine_transform
logger = setup_logger(__name__)
registered_ops = []
def register_op(cls):
registered_ops.append(cls.__name__)
if not hasattr(BaseOperator, cls.__name__):
setattr(BaseOperator, cls.__name__, cls)
else:
raise KeyError("The {} class has been registered.".format(cls.__name__))
return serializable(cls)
class BboxError(ValueError):
pass
class ImageError(ValueError):
pass
class BaseOperator(object):
def __init__(self, name=None):
if name is None:
name = self.__class__.__name__
self._id = name + '_' + str(uuid.uuid4())[-6:]
def apply(self, sample, context=None):
""" Process a sample.
Args:
sample (dict): a dict of sample, eg: {'image':xx, 'label': xxx}
context (dict): info about this sample processing
Returns:
result (dict): a processed sample
"""
return sample
def __call__(self, sample, context=None):
""" Process a sample.
Args:
sample (dict): a dict of sample, eg: {'image':xx, 'label': xxx}
context (dict): info about this sample processing
Returns:
result (dict): a processed sample
"""
if isinstance(sample, Sequence):
for i in range(len(sample)):
sample[i] = self.apply(sample[i], context)
else:
sample = self.apply(sample, context)
return sample
def __str__(self):
return str(self._id)
@register_op
class Decode(BaseOperator):
def __init__(self):
""" Transform the image data to numpy format following the rgb format
"""
super(Decode, self).__init__()
def apply(self, sample, context=None):
""" load image if 'im_file' field is not empty but 'image' is"""
if 'image' not in sample:
with open(sample['im_file'], 'rb') as f:
sample['image'] = f.read()
sample.pop('im_file')
try:
im = sample['image']
data = np.frombuffer(im, dtype='uint8')
im = cv2.imdecode(data, 1) # BGR mode, but need RGB mode
if 'keep_ori_im' in sample and sample['keep_ori_im']:
sample['ori_image'] = im
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
except:
im = sample['image']
sample['image'] = im
if 'h' not in sample:
sample['h'] = im.shape[0]
elif sample['h'] != im.shape[0]:
logger.warning(
"The actual image height: {} is not equal to the "
"height: {} in annotation, and update sample['h'] by actual "
"image height.".format(im.shape[0], sample['h']))
sample['h'] = im.shape[0]
if 'w' not in sample:
sample['w'] = im.shape[1]
elif sample['w'] != im.shape[1]:
logger.warning(
"The actual image width: {} is not equal to the "
"width: {} in annotation, and update sample['w'] by actual "
"image width.".format(im.shape[1], sample['w']))
sample['w'] = im.shape[1]
sample['im_shape'] = np.array(im.shape[:2], dtype=np.float32)
sample['scale_factor'] = np.array([1., 1.], dtype=np.float32)
return sample
def _make_dirs(dirname):
try:
from pathlib import Path
except ImportError:
from pathlib2 import Path
Path(dirname).mkdir(exist_ok=True)
@register_op
class DecodeCache(BaseOperator):
def __init__(self, cache_root=None):
'''decode image and caching
'''
super(DecodeCache, self).__init__()
self.use_cache = False if cache_root is None else True
self.cache_root = cache_root
if cache_root is not None:
_make_dirs(cache_root)
def apply(self, sample, context=None):
if self.use_cache and os.path.exists(
self.cache_path(self.cache_root, sample['im_file'])):
path = self.cache_path(self.cache_root, sample['im_file'])
im = self.load(path)
else:
if 'image' not in sample:
with open(sample['im_file'], 'rb') as f:
sample['image'] = f.read()
im = sample['image']
data = np.frombuffer(im, dtype='uint8')
im = cv2.imdecode(data, 1) # BGR mode, but need RGB mode
if 'keep_ori_im' in sample and sample['keep_ori_im']:
sample['ori_image'] = im
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
if self.use_cache and not os.path.exists(
self.cache_path(self.cache_root, sample['im_file'])):
path = self.cache_path(self.cache_root, sample['im_file'])
self.dump(im, path)
sample['image'] = im
sample['h'] = im.shape[0]
sample['w'] = im.shape[1]
sample['im_shape'] = np.array(im.shape[:2], dtype=np.float32)
sample['scale_factor'] = np.array([1., 1.], dtype=np.float32)
sample.pop('im_file')
return sample
@staticmethod
def cache_path(dir_oot, im_file):
return os.path.join(dir_oot, os.path.basename(im_file) + '.pkl')
@staticmethod
def load(path):
with open(path, 'rb') as f:
im = pickle.load(f)
return im
@staticmethod
def dump(obj, path):
MUTEX.acquire()
try:
with open(path, 'wb') as f:
pickle.dump(obj, f)
except Exception as e:
logger.warning('dump {} occurs exception {}'.format(path, str(e)))
finally:
MUTEX.release()
@register_op
class SniperDecodeCrop(BaseOperator):
def __init__(self):
super(SniperDecodeCrop, self).__init__()
def __call__(self, sample, context=None):
if 'image' not in sample:
with open(sample['im_file'], 'rb') as f:
sample['image'] = f.read()
sample.pop('im_file')
im = sample['image']
data = np.frombuffer(im, dtype='uint8')
im = cv2.imdecode(data, cv2.IMREAD_COLOR) # BGR mode, but need RGB mode
if 'keep_ori_im' in sample and sample['keep_ori_im']:
sample['ori_image'] = im
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
chip = sample['chip']
x1, y1, x2, y2 = [int(xi) for xi in chip]
im = im[max(y1, 0):min(y2, im.shape[0]), max(x1, 0):min(x2, im.shape[
1]), :]
sample['image'] = im
h = im.shape[0]
w = im.shape[1]
# sample['im_info'] = [h, w, 1.0]
sample['h'] = h
sample['w'] = w
sample['im_shape'] = np.array(im.shape[:2], dtype=np.float32)
sample['scale_factor'] = np.array([1., 1.], dtype=np.float32)
return sample
@register_op
class Permute(BaseOperator):
def __init__(self):
"""
Change the channel to be (C, H, W)
"""
super(Permute, self).__init__()
def apply(self, sample, context=None):
im = sample['image']
im = im.transpose((2, 0, 1))
sample['image'] = im
if 'pre_image' in sample:
pre_im = sample['pre_image']
pre_im = pre_im.transpose((2, 0, 1))
sample['pre_image'] = pre_im
return sample
@register_op
class Lighting(BaseOperator):
"""
Lighting the image by eigenvalues and eigenvectors
Args:
eigval (list): eigenvalues
eigvec (list): eigenvectors
alphastd (float): random weight of lighting, 0.1 by default
"""
def __init__(self, eigval, eigvec, alphastd=0.1):
super(Lighting, self).__init__()
self.alphastd = alphastd
self.eigval = np.array(eigval).astype('float32')
self.eigvec = np.array(eigvec).astype('float32')
def apply(self, sample, context=None):
alpha = np.random.normal(scale=self.alphastd, size=(3, ))
sample['image'] += np.dot(self.eigvec, self.eigval * alpha)
if 'pre_image' in sample:
sample['pre_image'] += np.dot(self.eigvec, self.eigval * alpha)
return sample
@register_op
class RandomErasingImage(BaseOperator):
def __init__(self, prob=0.5, lower=0.02, higher=0.4, aspect_ratio=0.3):
"""
Random Erasing Data Augmentation, see https://arxiv.org/abs/1708.04896
Args:
prob (float): probability to carry out random erasing
lower (float): lower limit of the erasing area ratio
higher (float): upper limit of the erasing area ratio
aspect_ratio (float): aspect ratio of the erasing region
"""
super(RandomErasingImage, self).__init__()
self.prob = prob
self.lower = lower
self.higher = higher
self.aspect_ratio = aspect_ratio
def apply(self, sample, context=None):
gt_bbox = sample['gt_bbox']
im = sample['image']
if not isinstance(im, np.ndarray):
raise TypeError("{}: image is not a numpy array.".format(self))
if len(im.shape) != 3:
raise ImageError("{}: image is not 3-dimensional.".format(self))
for idx in range(gt_bbox.shape[0]):
if self.prob <= np.random.rand():
continue
x1, y1, x2, y2 = gt_bbox[idx, :]
w_bbox = x2 - x1
h_bbox = y2 - y1
area = w_bbox * h_bbox
target_area = random.uniform(self.lower, self.higher) * area
aspect_ratio = random.uniform(self.aspect_ratio,
1 / self.aspect_ratio)
h = int(round(math.sqrt(target_area * aspect_ratio)))
w = int(round(math.sqrt(target_area / aspect_ratio)))
if w < w_bbox and h < h_bbox:
off_y1 = random.randint(0, int(h_bbox - h))
off_x1 = random.randint(0, int(w_bbox - w))
im[int(y1 + off_y1):int(y1 + off_y1 + h), int(x1 + off_x1):int(
x1 + off_x1 + w), :] = 0
sample['image'] = im
return sample
@register_op
class NormalizeImage(BaseOperator):
def __init__(self,
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
is_scale=True,
norm_type='mean_std'):
"""
Args:
mean (list): the pixel mean
std (list): the pixel variance
is_scale (bool): scale the pixel to [0,1]
norm_type (str): type in ['mean_std', 'none']
"""
super(NormalizeImage, self).__init__()
self.mean = mean
self.std = std
self.is_scale = is_scale
self.norm_type = norm_type
if not (isinstance(self.mean, list) and isinstance(self.std, list) and
isinstance(self.is_scale, bool) and
self.norm_type in ['mean_std', 'none']):
raise TypeError("{}: input type is invalid.".format(self))
from functools import reduce
if reduce(lambda x, y: x * y, self.std) == 0:
raise ValueError('{}: std is invalid!'.format(self))
def apply(self, sample, context=None):
"""Normalize the image.
Operators:
1.(optional) Scale the pixel to [0,1]
2.(optional) Each pixel minus mean and is divided by std
"""
im = sample['image']
im = im.astype(np.float32, copy=False)
if self.is_scale:
scale = 1.0 / 255.0
im *= scale
if self.norm_type == 'mean_std':
mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
std = np.array(self.std)[np.newaxis, np.newaxis, :]
im -= mean
im /= std
sample['image'] = im
if 'pre_image' in sample:
pre_im = sample['pre_image']
pre_im = pre_im.astype(np.float32, copy=False)
if self.is_scale:
scale = 1.0 / 255.0
pre_im *= scale
if self.norm_type == 'mean_std':
mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
std = np.array(self.std)[np.newaxis, np.newaxis, :]
pre_im -= mean
pre_im /= std
sample['pre_image'] = pre_im
return sample
@register_op
class GridMask(BaseOperator):
def __init__(self,
use_h=True,
use_w=True,
rotate=1,
offset=False,
ratio=0.5,
mode=1,
prob=0.7,
upper_iter=360000):
"""
GridMask Data Augmentation, see https://arxiv.org/abs/2001.04086
Args:
use_h (bool): whether to mask vertically
use_w (boo;): whether to mask horizontally
rotate (float): angle for the mask to rotate
offset (float): mask offset
ratio (float): mask ratio
mode (int): gridmask mode
prob (float): max probability to carry out gridmask
upper_iter (int): suggested to be equal to global max_iter
"""
super(GridMask, self).__init__()
self.use_h = use_h
self.use_w = use_w
self.rotate = rotate
self.offset = offset
self.ratio = ratio
self.mode = mode
self.prob = prob
self.upper_iter = upper_iter
from .gridmask_utils import Gridmask
self.gridmask_op = Gridmask(
use_h,
use_w,
rotate=rotate,
offset=offset,
ratio=ratio,
mode=mode,
prob=prob,
upper_iter=upper_iter)
def apply(self, sample, context=None):
sample['image'] = self.gridmask_op(sample['image'], sample['curr_iter'])
return sample
@register_op
class RandomDistort(BaseOperator):
"""Random color distortion.
Args:
hue (list): hue settings. in [lower, upper, probability] format.
saturation (list): saturation settings. in [lower, upper, probability] format.
contrast (list): contrast settings. in [lower, upper, probability] format.
brightness (list): brightness settings. in [lower, upper, probability] format.
random_apply (bool): whether to apply in random (yolo) or fixed (SSD)
order.
count (int): the number of doing distrot
random_channel (bool): whether to swap channels randomly
"""
def __init__(self,
hue=[-18, 18, 0.5],
saturation=[0.5, 1.5, 0.5],
contrast=[0.5, 1.5, 0.5],
brightness=[0.5, 1.5, 0.5],
random_apply=True,
count=4,
random_channel=False):
super(RandomDistort, self).__init__()
self.hue = hue
self.saturation = saturation
self.contrast = contrast
self.brightness = brightness
self.random_apply = random_apply
self.count = count
self.random_channel = random_channel
def apply_hue(self, img):
low, high, prob = self.hue
if np.random.uniform(0., 1.) < prob:
return img
img = img.astype(np.float32)
# it works, but result differ from HSV version
delta = np.random.uniform(low, high)
u = np.cos(delta * np.pi)
w = np.sin(delta * np.pi)
bt = np.array([[1.0, 0.0, 0.0], [0.0, u, -w], [0.0, w, u]])
tyiq = np.array([[0.299, 0.587, 0.114], [0.596, -0.274, -0.321],
[0.211, -0.523, 0.311]])
ityiq = np.array([[1.0, 0.956, 0.621], [1.0, -0.272, -0.647],
[1.0, -1.107, 1.705]])
t = np.dot(np.dot(ityiq, bt), tyiq).T
img = np.dot(img, t)
return img
def apply_saturation(self, img):
low, high, prob = self.saturation
if np.random.uniform(0., 1.) < prob:
return img
delta = np.random.uniform(low, high)
img = img.astype(np.float32)
# it works, but result differ from HSV version
gray = img * np.array([[[0.299, 0.587, 0.114]]], dtype=np.float32)
gray = gray.sum(axis=2, keepdims=True)
gray *= (1.0 - delta)
img *= delta
img += gray
return img
def apply_contrast(self, img):
low, high, prob = self.contrast
if np.random.uniform(0., 1.) < prob:
return img
delta = np.random.uniform(low, high)
img = img.astype(np.float32)
img *= delta
return img
def apply_brightness(self, img):
low, high, prob = self.brightness
if np.random.uniform(0., 1.) < prob:
return img
delta = np.random.uniform(low, high)
img = img.astype(np.float32)
img += delta
return img
def apply(self, sample, context=None):
img = sample['image']
if self.random_apply:
functions = [
self.apply_brightness, self.apply_contrast,
self.apply_saturation, self.apply_hue
]
distortions = np.random.permutation(functions)[:self.count]
for func in distortions:
img = func(img)
sample['image'] = img
return sample
img = self.apply_brightness(img)
mode = np.random.randint(0, 2)
if mode:
img = self.apply_contrast(img)
img = self.apply_saturation(img)
img = self.apply_hue(img)
if not mode:
img = self.apply_contrast(img)
if self.random_channel:
if np.random.randint(0, 2):
img = img[..., np.random.permutation(3)]
sample['image'] = img
return sample
@register_op
class PhotoMetricDistortion(BaseOperator):
"""Apply photometric distortion to image sequentially, every transformation
is applied with a probability of 0.5. The position of random contrast is in
second or second to last.
1. random brightness
2. random contrast (mode 0)
3. convert color from BGR to HSV
4. random saturation
5. random hue
6. convert color from HSV to BGR
7. random contrast (mode 1)
8. randomly swap channels
Args:
brightness_delta (int): delta of brightness.
contrast_range (tuple): range of contrast.
saturation_range (tuple): range of saturation.
hue_delta (int): delta of hue.
"""
def __init__(self,
brightness_delta=32,
contrast_range=(0.5, 1.5),
saturation_range=(0.5, 1.5),
hue_delta=18):
super(PhotoMetricDistortion, self).__init__()
self.brightness_delta = brightness_delta
self.contrast_lower, self.contrast_upper = contrast_range
self.saturation_lower, self.saturation_upper = saturation_range
self.hue_delta = hue_delta
def apply(self, results, context=None):
"""Call function to perform photometric distortion on images.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Result dict with images distorted.
"""
img = results['image']
img = img.astype(np.float32)
# random brightness
if np.random.randint(2):
delta = np.random.uniform(-self.brightness_delta,
self.brightness_delta)
img += delta
# mode == 0 --> do random contrast first
# mode == 1 --> do random contrast last
mode = np.random.randint(2)
if mode == 1:
if np.random.randint(2):
alpha = np.random.uniform(self.contrast_lower,
self.contrast_upper)
img *= alpha
# convert color from BGR to HSV
img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# random saturation
if np.random.randint(2):
img[..., 1] *= np.random.uniform(self.saturation_lower,
self.saturation_upper)
# random hue
if np.random.randint(2):
img[..., 0] += np.random.uniform(-self.hue_delta, self.hue_delta)
img[..., 0][img[..., 0] > 360] -= 360
img[..., 0][img[..., 0] < 0] += 360
# convert color from HSV to BGR
img = cv2.cvtColor(img, cv2.COLOR_HSV2BGR)
# random contrast
if mode == 0:
if np.random.randint(2):
alpha = np.random.uniform(self.contrast_lower,
self.contrast_upper)
img *= alpha
# randomly swap channels
if np.random.randint(2):
img = img[..., np.random.permutation(3)]
results['image'] = img
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(\nbrightness_delta={self.brightness_delta},\n'
repr_str += 'contrast_range='
repr_str += f'{(self.contrast_lower, self.contrast_upper)},\n'
repr_str += 'saturation_range='
repr_str += f'{(self.saturation_lower, self.saturation_upper)},\n'
repr_str += f'hue_delta={self.hue_delta})'
return repr_str
@register_op
class AutoAugment(BaseOperator):
def __init__(self, autoaug_type="v1"):
"""
Args:
autoaug_type (str): autoaug type, support v0, v1, v2, v3, test
"""
super(AutoAugment, self).__init__()
self.autoaug_type = autoaug_type
def apply(self, sample, context=None):
"""
Learning Data Augmentation Strategies for Object Detection, see https://arxiv.org/abs/1906.11172
"""
im = sample['image']
gt_bbox = sample['gt_bbox']
if not isinstance(im, np.ndarray):
raise TypeError("{}: image is not a numpy array.".format(self))
if len(im.shape) != 3:
raise ImageError("{}: image is not 3-dimensional.".format(self))
if len(gt_bbox) == 0:
return sample
height, width, _ = im.shape
norm_gt_bbox = np.ones_like(gt_bbox, dtype=np.float32)
norm_gt_bbox[:, 0] = gt_bbox[:, 1] / float(height)
norm_gt_bbox[:, 1] = gt_bbox[:, 0] / float(width)
norm_gt_bbox[:, 2] = gt_bbox[:, 3] / float(height)
norm_gt_bbox[:, 3] = gt_bbox[:, 2] / float(width)
from .autoaugment_utils import distort_image_with_autoaugment
im, norm_gt_bbox = distort_image_with_autoaugment(im, norm_gt_bbox,
self.autoaug_type)
gt_bbox[:, 0] = norm_gt_bbox[:, 1] * float(width)
gt_bbox[:, 1] = norm_gt_bbox[:, 0] * float(height)
gt_bbox[:, 2] = norm_gt_bbox[:, 3] * float(width)
gt_bbox[:, 3] = norm_gt_bbox[:, 2] * float(height)
sample['image'] = im
sample['gt_bbox'] = gt_bbox
return sample
@register_op
class RandomFlip(BaseOperator):
def __init__(self, prob=0.5):
"""
Args:
prob (float): the probability of flipping image
"""
super(RandomFlip, self).__init__()
self.prob = prob
if not (isinstance(self.prob, float)):
raise TypeError("{}: input type is invalid.".format(self))
def apply_segm(self, segms, height, width):
def _flip_poly(poly, width):
flipped_poly = np.array(poly)
flipped_poly[0::2] = width - np.array(poly[0::2])
return flipped_poly.tolist()
def _flip_rle(rle, height, width):
if 'counts' in rle and type(rle['counts']) == list:
rle = mask_util.frPyObjects(rle, height, width)
mask = mask_util.decode(rle)
mask = mask[:, ::-1]
rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
return rle
flipped_segms = []
for segm in segms:
if is_poly(segm):
# Polygon format
flipped_segms.append([_flip_poly(poly, width) for poly in segm])
else:
# RLE format
import pycocotools.mask as mask_util
flipped_segms.append(_flip_rle(segm, height, width))
return flipped_segms
def apply_keypoint(self, gt_keypoint, width):
for i in range(gt_keypoint.shape[1]):
if i % 2 == 0:
old_x = gt_keypoint[:, i].copy()
gt_keypoint[:, i] = width - old_x
return gt_keypoint
def apply_image(self, image):
return image[:, ::-1, :]
def apply_bbox(self, bbox, width):
oldx1 = bbox[:, 0].copy()
oldx2 = bbox[:, 2].copy()
bbox[:, 0] = width - oldx2
bbox[:, 2] = width - oldx1
return bbox
def apply(self, sample, context=None):
"""Filp the image and bounding box.
Operators:
1. Flip the image numpy.
2. Transform the bboxes' x coordinates.
(Must judge whether the coordinates are normalized!)
3. Transform the segmentations' x coordinates.
(Must judge whether the coordinates are normalized!)
Output:
sample: the image, bounding box and segmentation part
in sample are flipped.
"""
if np.random.uniform(0, 1) < self.prob:
im = sample['image']
height, width = im.shape[:2]
im = self.apply_image(im)
if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], width)
if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
sample['gt_poly'] = self.apply_segm(sample['gt_poly'], height,
width)
if 'gt_keypoint' in sample and len(sample['gt_keypoint']) > 0:
sample['gt_keypoint'] = self.apply_keypoint(
sample['gt_keypoint'], width)
if 'semantic' in sample and sample['semantic']:
sample['semantic'] = sample['semantic'][:, ::-1]
if 'gt_segm' in sample and sample['gt_segm'].any():
sample['gt_segm'] = sample['gt_segm'][:, :, ::-1]
sample['flipped'] = True
sample['image'] = im
return sample
@register_op
class Resize(BaseOperator):
def __init__(self, target_size, keep_ratio, interp=cv2.INTER_LINEAR):
"""
Resize image to target size. if keep_ratio is True,
resize the image's long side to the maximum of target_size
if keep_ratio is False, resize the image to target size(h, w)
Args:
target_size (int|list): image target size
keep_ratio (bool): whether keep_ratio or not, default true
interp (int): the interpolation method
"""
super(Resize, self).__init__()
self.keep_ratio = keep_ratio
self.interp = interp
if not isinstance(target_size, (Integral, Sequence)):
raise TypeError(
"Type of target_size is invalid. Must be Integer or List or Tuple, now is {}".
format(type(target_size)))
if isinstance(target_size, Integral):
target_size = [target_size, target_size]
self.target_size = target_size
def apply_image(self, image, scale):
im_scale_x, im_scale_y = scale
return cv2.resize(
image,
None,
None,
fx=im_scale_x,
fy=im_scale_y,
interpolation=self.interp)
def apply_bbox(self, bbox, scale, size):
im_scale_x, im_scale_y = scale
resize_w, resize_h = size
bbox[:, 0::2] *= im_scale_x
bbox[:, 1::2] *= im_scale_y
bbox[:, 0::2] = np.clip(bbox[:, 0::2], 0, resize_w)
bbox[:, 1::2] = np.clip(bbox[:, 1::2], 0, resize_h)
return bbox
def apply_area(self, area, scale):
im_scale_x, im_scale_y = scale
return area * im_scale_x * im_scale_y
def apply_joints(self, joints, scale, size):
im_scale_x, im_scale_y = scale
resize_w, resize_h = size
joints[..., 0] *= im_scale_x
joints[..., 1] *= im_scale_y
joints[..., 0] = np.clip(joints[..., 0], 0, resize_w)
joints[..., 1] = np.clip(joints[..., 1], 0, resize_h)
return joints
def apply_segm(self, segms, im_size, scale):
def _resize_poly(poly, im_scale_x, im_scale_y):
resized_poly = np.array(poly).astype('float32')
resized_poly[0::2] *= im_scale_x
resized_poly[1::2] *= im_scale_y
return resized_poly.tolist()
def _resize_rle(rle, im_h, im_w, im_scale_x, im_scale_y):
if 'counts' in rle and type(rle['counts']) == list:
rle = mask_util.frPyObjects(rle, im_h, im_w)
mask = mask_util.decode(rle)
mask = cv2.resize(
mask,
None,
None,
fx=im_scale_x,
fy=im_scale_y,
interpolation=self.interp)
rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
return rle
im_h, im_w = im_size
im_scale_x, im_scale_y = scale
resized_segms = []
for segm in segms:
if is_poly(segm):
# Polygon format
resized_segms.append([
_resize_poly(poly, im_scale_x, im_scale_y) for poly in segm
])
else:
# RLE format
import pycocotools.mask as mask_util
resized_segms.append(
_resize_rle(segm, im_h, im_w, im_scale_x, im_scale_y))
return resized_segms
def apply(self, sample, context=None):
""" Resize the image numpy.
"""
im = sample['image']
if not isinstance(im, np.ndarray):
raise TypeError("{}: image type is not numpy.".format(self))
# apply image
if len(im.shape) == 3:
im_shape = im.shape
else:
im_shape = im[0].shape
if self.keep_ratio:
im_size_min = np.min(im_shape[0:2])
im_size_max = np.max(im_shape[0:2])
target_size_min = np.min(self.target_size)
target_size_max = np.max(self.target_size)
im_scale = min(target_size_min / im_size_min,
target_size_max / im_size_max)
resize_h = int(im_scale * float(im_shape[0]) + 0.5)
resize_w = int(im_scale * float(im_shape[1]) + 0.5)
im_scale_x = im_scale
im_scale_y = im_scale
else:
resize_h, resize_w = self.target_size
im_scale_y = resize_h / im_shape[0]
im_scale_x = resize_w / im_shape[1]
if len(im.shape) == 3:
im = self.apply_image(sample['image'], [im_scale_x, im_scale_y])
sample['image'] = im.astype(np.float32)
else:
resized_images = []
for one_im in im:
applied_im = self.apply_image(one_im, [im_scale_x, im_scale_y])
resized_images.append(applied_im)
sample['image'] = np.array(resized_images)
# 2d keypoints resize
if 'kps2d' in sample.keys():
kps2d = sample['kps2d']
kps2d[:, :, 0] = kps2d[:, :, 0] * im_scale_x
kps2d[:, :, 1] = kps2d[:, :, 1] * im_scale_y
sample['kps2d'] = kps2d
sample['im_shape'] = np.asarray([resize_h, resize_w], dtype=np.float32)
if 'scale_factor' in sample:
scale_factor = sample['scale_factor']
sample['scale_factor'] = np.asarray(
[scale_factor[0] * im_scale_y, scale_factor[1] * im_scale_x],
dtype=np.float32)
else:
sample['scale_factor'] = np.asarray(
[im_scale_y, im_scale_x], dtype=np.float32)
# apply bbox
if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'],
[im_scale_x, im_scale_y],
[resize_w, resize_h])
# apply areas
if 'gt_areas' in sample:
sample['gt_areas'] = self.apply_area(sample['gt_areas'],
[im_scale_x, im_scale_y])