简体中文 | English
车辆属性模型采用VeRi数据集的属性,共计10种车辆颜色及9种车型, 具体如下:
# 车辆颜色
- "yellow"
- "orange"
- "green"
- "gray"
- "red"
- "blue"
- "white"
- "golden"
- "brown"
- "black"
# 车型
- "sedan"
- "suv"
- "van"
- "hatchback"
- "mpv"
- "pickup"
- "bus"
- "truck"
- "estate"
在标注文件中使用长度为19的序列来表示上述属性。
举例:
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
前10位中,位序号0的值为1,表示车辆颜色为"yellow"
。
后9位中,位序号11的值为1,表示车型为"suv"
。
理解了上面数据格式
的含义后,就可以进行数据标注的工作。其本质是:每张车辆的图片,建立一组长度为19的标注项,分别对应各项属性值。
举例:
对于一张原始图片,
1) 使用检测框,标注图片中每台车辆的位置。
2) 每一个检测框(对应每辆车),包含一组19位的属性值数组,数组的每一位以0或1表示。对应上述19个属性分类。例如,如果颜色是'orange',则数组索引为1的位置值为1,如果车型是'sedan',则数组索引为10的位置值为1。
标注完成后利用检测框将每辆车截取成只包含单辆车的图片,则图片与19位属性标注建立了对应关系。也可先截取再进行标注,效果相同。
数据标注完成后,就可以拿来做模型的训练,完成自定义模型的优化工作。
其主要有两步工作需要完成:1)将数据与标注数据整理成训练格式。2)修改配置文件开始训练。
训练数据包括训练使用的图片和一个训练列表train.txt,其具体位置在训练配置中指定,其放置方式示例如下:
Attribute/
|-- data 训练图片文件夹
| |-- 00001.jpg
| |-- 00002.jpg
| `-- 0000x.jpg
`-- train.txt 训练数据列表
train.txt文件内为所有训练图片名称(相对于根路径的文件路径)+ 19个标注值
其每一行表示一辆车的图片和标注结果。其格式为:
00001.jpg 0,0,1,0,....
注意:1)图片与标注值之间是以Tab[\t]符号隔开, 2)标注值之间是以逗号[,]隔开。该格式不能错,否则解析失败。
首先执行以下命令下载训练代码(更多环境问题请参考Install_PaddleClas):
git clone https://github.com/PaddlePaddle/PaddleClas
需要在配置文件中,修改的配置项如下:
DataLoader:
Train:
dataset:
name: MultiLabelDataset
image_root: "dataset/VeRi/" # the root path of training images
cls_label_path: "dataset/VeRi/train_list.txt" # the location of the training list file
label_ratio: True
transform_ops:
...
Eval:
dataset:
name: MultiLabelDataset
image_root: "dataset/VeRi/" # the root path of evaluation images
cls_label_path: "dataset/VeRi/val_list.txt" # the location of the evaluation list file
label_ratio: True
transform_ops:
...
注意:
- 这里image_root路径+train.txt中图片相对路径,对应图片的完整路径位置。
- 如果有修改属性数量,则还需修改内容配置项中属性种类数量:
# model architecture
Arch:
name: "PPLCNet_x1_0"
pretrained: True
use_ssld: True
class_num: 19 #属性种类数量
然后运行以下命令开始训练。
#多卡训练
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \
tools/train.py \
-c ./ppcls/configs/PULC/vehicle_attribute/PPLCNet_x1_0.yaml
#单卡训练
python3 tools/train.py \
-c ./ppcls/configs/PULC/vehicle_attribute/PPLCNet_x1_0.yaml
训练完成后可以执行以下命令进行性能评估:
#多卡评估
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \
tools/eval.py \
-c ./ppcls/configs/PULC/vehicle_attribute/PPLCNet_x1_0.yaml \
-o Global.pretrained_model=./output/PPLCNet_x1_0/best_model
#单卡评估
python3 tools/eval.py \
-c ./ppcls/configs/PULC/vehicle_attribute/PPLCNet_x1_0.yaml \
-o Global.pretrained_model=./output/PPLCNet_x1_0/best_model
使用下述命令将训练好的模型导出为预测部署模型。
python3 tools/export_model.py \
-c ./ppcls/configs/PULC/vehicle_attribute/PPLCNet_x1_0.yaml \
-o Global.pretrained_model=output/PPLCNet_x1_0/best_model \
-o Global.save_inference_dir=deploy/models/PPLCNet_x1_0_vehicle_attribute_model
导出模型后,如果希望在PP-Vehicle中使用,则需要下载预测部署模型,解压并将其中的配置文件infer_cfg.yml
文件,放置到导出的模型文件夹PPLCNet_x1_0_vehicle_attribute_model
中。
使用时在PP-Vehicle中的配置文件./deploy/pipeline/config/infer_cfg_ppvehicle.yml
中修改新的模型路径model_dir
项,并开启功能enable: True
。
VEHICLE_ATTR:
model_dir: [YOUR_DEPLOY_MODEL_DIR]/PPLCNet_x1_0_vehicle_attribute_infer/ #新导出的模型路径位置
enable: True #开启功能
然后可以使用-->至此即完成新增属性类别识别任务。
该过程与行人属性的增减过程相似,如果需要增加、减少属性数量,则需要:
1)标注时需增加新属性类别信息或删减属性类别信息;
2)对应修改训练中train.txt所使用的属性数量和名称;
3)修改训练配置,例如PaddleClas/blob/develop/ppcls/configs/PULC/vehicle_attribute/PPLCNet_x1_0.yaml
文件中的属性数量,详细见上述修改配置开始训练
部分。
增加属性示例:
- 在标注数据时在19位后继续增加新的属性标注数值;
- 在train.txt文件的标注数值中也增加新的属性数值。
- 注意属性类型在train.txt中属性数值列表中的位置的对应关系需要固定。
删减属性同理。
修改了属性定义后,pipeline后处理部分也需要做相应修改,主要影响结果可视化时的显示结果。
相应代码在文件中postprocess
函数。
其函数实现说明如下:
# 在类的初始化函数中,定义了颜色/车型的名称
self.color_list = [
"yellow", "orange", "green", "gray", "red", "blue", "white",
"golden", "brown", "black"
]
self.type_list = [
"sedan", "suv", "van", "hatchback", "mpv", "pickup", "bus", "truck",
"estate"
]
...
def postprocess(self, inputs, result):
# postprocess output of predictor
im_results = result['output']
batch_res = []
for res in im_results:
res = res.tolist()
attr_res = []
color_res_str = "Color: "
type_res_str = "Type: "
color_idx = np.argmax(res[:10]) # 前10项表示各项颜色得分,取得分最大项作为颜色结果
type_idx = np.argmax(res[10:]) # 后9项表示各项车型得分,取得分最大项作为车型结果
# 颜色和车型的得分都需要超过对应阈值,否则视为'UnKnown'
if res[color_idx] >= self.color_threshold:
color_res_str += self.color_list[color_idx]
else:
color_res_str += "Unknown"
attr_res.append(color_res_str)
if res[type_idx + 10] >= self.type_threshold:
type_res_str += self.type_list[type_idx]
else:
type_res_str += "Unknown"
attr_res.append(type_res_str)
batch_res.append(attr_res)
result = {'output': batch_res}
return result