-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathdl_secp256k1_ed25519_eq.rs
339 lines (308 loc) · 11.9 KB
/
dl_secp256k1_ed25519_eq.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
//! Cross curve proof of Discrete Log equality between secp256k1 and ed25519.
//!
//!
//! Here "equality" means the two secret scalars have the same 252-bit representaion. To prove they
//! have the same representation we make two sets of 252 pedersen commiments and show that:
//!
//! 1. For i=0..252 we show the ith commitment is either to 0 or 2^i
//! 2. That the commiments are the same value for both sets.
//! 3. The sum of the commitments equals to the claimed public keys on each curve.
//!
//! [`CrossCurveDLEQ`] is the main prover/verifier.
//! The underlying Sigma protocol it uses is in [`CoreProof`].
//!
//! This was partially inspired by [MRL-0010] but it re-imagines it as a Sigma protocol.
//!
//! # Example
//!
//! [MRL-0010]: https://web.getmonero.org/resources/research-lab/pubs/MRL-0010.pdf
use crate::{
ed25519,
or::Either,
secp256k1,
secp256k1::fun::{
g,
marker::*,
rand_core::{CryptoRng, RngCore},
s,
subtle::{self, ConditionallySelectable},
Point as PointP, Scalar as ScalarP, G as GP,
},
All, And, Eq, FiatShamir, Or, ProverTranscript, Sigma, Transcript,
};
use alloc::vec::Vec;
use curve25519_dalek::{
constants::ED25519_BASEPOINT_TABLE, edwards::EdwardsPoint as PointQ, scalar::Scalar as ScalarQ,
traits::Identity,
};
use generic_array::typenum::{U252, U31};
static GQ: &curve25519_dalek::edwards::EdwardsBasepointTable = &ED25519_BASEPOINT_TABLE;
/// The underlying sigma protocol we will use to prove the relationship between the two sets of commitments.
///
/// We are trying to prove that `X_p = x * G_p` and `X_q = x * G_q`. The approach is
/// to split x into two sets of 252 bit pedersen commitments for each curve and prove that the
/// corresponding commitments commit to the same bit.
//
/// Note the commitments are in the form commit(b) = r * G + b* H where G is the standard basepoint
/// for each curve.
pub type CoreProof = And<
All<
// For each of the 252 bits of the secret key
// We show that both commitments are a commitment to zero OR to 2^i for i = 0..252
Or<
And<secp256k1::DLG<U31>, ed25519::DLG<U31>>,
And<secp256k1::DLG<U31>, ed25519::DLG<U31>>,
>,
U252,
>,
// Finally we do two DLEQ proofs to show that if the commitmens add up to xH_p and xH_q, we show
// that X_p = xG_p and X_q = xG_q.
And<Eq<secp256k1::DLG<U31>, secp256k1::DL<U31>>, Eq<ed25519::DLG<U31>, ed25519::DL<U31>>>,
>;
const COMMITMENT_BITS: usize = 252;
/// The proof the a public key on secp256k1 and ed25519 have the same 252-bit secret key.
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[derive(Debug, Clone, PartialEq)]
pub struct CrossCurveDLEQProof {
/// The sum of the Pedersen blindings
pub sum_blindings: (ScalarP<Public, Zero>, ScalarQ),
/// The 252 pairs of commitments
pub commitments: Vec<(PointP, PointQ)>,
/// The core proof which shows the pairs of commitments commit to the same bit and the resulting
/// sum is the claimed points.
pub proof: crate::CompactProof<CoreProof>,
}
/// The proof system which prepares the high level statement to be proved/verified with
/// [`CoreProof`].
#[derive(Debug, Clone)]
pub struct CrossCurveDLEQ<T> {
HQ: PointQ,
HP: PointP,
core_proof_system: FiatShamir<CoreProof, T>,
powers_of_two: Vec<(PointP, PointQ)>,
}
impl<T: Transcript<CoreProof> + Default> CrossCurveDLEQ<T> {
/// Creates a new prover given the the additional point to be used inthe Pedersen commitment for each curve.
pub fn new(HP: PointP, HQ: PointQ) -> Self {
let powers_of_two = core::iter::successors(Some((HP, HQ)), |(H2P, H2Q)| {
// compute 2^i * H for i = 0..252 by successively adding the result of the last addition
Some((
g!(H2P + H2P)
.normalize()
.non_zero()
.expect("power of two addition"),
(H2Q + H2Q),
))
})
.take(COMMITMENT_BITS)
.collect();
Self {
HP,
HQ,
core_proof_system: FiatShamir::<CoreProof, T>::default(),
powers_of_two,
}
}
/// Generates the two corresponding points for the same 252-bit ed25519
/// secret and generates a proof that they have the same discrete logarithm.
///
/// Returns the proof and the two points that form the equality claim.
///
/// # Panics
///
/// - If the secret is larger than 2^253 -1
/// - If the secret is 0
pub fn prove(
&self,
secret: &ScalarQ,
rng: &mut (impl CryptoRng + RngCore),
) -> (CrossCurveDLEQProof, (PointP, PointQ))
where
T: ProverTranscript<CoreProof>,
{
// Must be a 252 bit ed25519 key i.e. must not have it's 253rd bit set
assert!(secret.as_bytes()[31] & 0b00010000 == 0);
let secp_secret = {
let mut bytes = secret.to_bytes();
// secp256kfun interprets scalars as big endian
bytes.reverse();
ScalarP::from_bytes(bytes)
.expect("will never overflow since ed25519 order is lower")
.non_zero()
.expect("must not be zero")
};
let claim = (g!(secp_secret * GP).normalize(), secret * GQ);
let pedersen_blindings = (0..COMMITMENT_BITS)
.map(|_| (ScalarP::random(rng), ScalarQ::random(rng)))
.collect::<Vec<_>>();
let sum_blindings = pedersen_blindings.iter().fold(
(ScalarP::zero(), ScalarQ::zero()),
|(accP, accQ), (rP, rQ)| (s!(accP + rP), accQ + rQ),
);
let sum_blindings = (sum_blindings.0.public(), sum_blindings.1);
let bits = to_bits(secret);
let commitments = self
.powers_of_two
.iter()
.zip(bits.iter())
.zip(pedersen_blindings.iter())
.map(|(((H2P, H2Q), bit), (rP, rQ))| {
let zero_commit_p = g!(rP * GP);
let one_commit_p = g!(zero_commit_p + H2P)
.non_zero()
.expect("computationally unreachable since zero_comit_p is random");
let zero_commit_q = rQ * GQ;
let one_commit_q = zero_commit_q + H2Q;
// Make sure to do a constant time choice here
let bit = subtle::Choice::from(*bit as u8);
(
PointP::conditional_select(
&zero_commit_p.normalize(),
&one_commit_p.normalize(),
bit,
),
PointQ::conditional_select(&zero_commit_q, &one_commit_q, bit),
)
})
.collect::<Vec<_>>();
let statement = self
.generate_statement(&sum_blindings, &claim, &commitments[..])
.expect("statement will be valid since we genreated it ourself");
let proof_witness = (
pedersen_blindings
.into_iter()
.zip(bits.iter())
.map(|((rP, rQ), bit)| match bit {
false => Either::Left((rP, rQ)),
true => Either::Right((rP, rQ)),
})
.collect(),
(secp_secret, *secret),
);
let proof = self
.core_proof_system
.prove(&proof_witness, &statement, Some(rng));
(
CrossCurveDLEQProof {
sum_blindings,
commitments,
proof,
},
claim,
)
}
/// Genrates the statement for the core proof from the commitments
fn generate_statement(
&self,
(rP, rQ): &(ScalarP<Public, Zero>, ScalarQ),
(XP, XQ): &(PointP, PointQ),
commitments: &[(PointP, PointQ)],
) -> Option<<CoreProof as Sigma>::Statement> {
let commitment_statement = self
.powers_of_two
.iter()
.zip(commitments)
.map(|((H2P, H2Q), (CP, CQ))| {
// This goes first since we bail if it's zero
g!(CP - H2P).normalize().non_zero().map(|CP_sub_H2P| {
(
// represents the claim the commitment is equal to 0
(*CP, *CQ),
// represents the claim the commitment is equal 2^i
(CP_sub_H2P, CQ - H2Q),
)
})
})
.collect::<Option<Vec<_>>>()?;
let (sumP, sumQ) = commitments.iter().fold(
(PointP::zero(), PointQ::identity()),
|(accP, accQ), (CP, CQ)| (g!(accP + CP), accQ + CQ),
);
let unblindedP = g!(sumP - rP * GP).normalize().non_zero()?;
let unblindedQ = sumQ - rQ * GQ;
let dleq_G_to_H = ((*XP, (self.HP, unblindedP)), (*XQ, (self.HQ, unblindedQ)));
Some((commitment_statement, dleq_G_to_H))
}
#[must_use]
/// Verify the claimed points have the same 252-bit discrete logarithm
pub fn verify(&self, proof: &CrossCurveDLEQProof, claim: (PointP, PointQ)) -> bool {
// Make sure the claimed ed25519 key is in the prime-order subgroup
if proof.commitments.len() != COMMITMENT_BITS || !claim.1.is_torsion_free() {
return false;
}
let statement = self.generate_statement(&proof.sum_blindings, &claim, &proof.commitments);
match statement {
Some(statement) => self.core_proof_system.verify(&statement, &proof.proof),
None => false,
}
}
}
fn to_bits(secret_key: &ScalarQ) -> [bool; COMMITMENT_BITS] {
let bytes = secret_key.as_bytes();
let mut bits = [false; COMMITMENT_BITS];
let mut index = 0;
#[allow(clippy::needless_range_loop)]
for i in 0..32 {
for j in 0..8 {
bits[index + j] = (bytes[i] & (1 << j)) != 0;
// we skip the bits above 252
if i == 31 && j == 3 {
break;
}
}
index += 8;
}
bits
}
#[cfg(test)]
mod test {
use super::*;
use crate::{
ed25519::test::{ed25519_point, ed25519_scalar},
HashTranscript,
};
use ::proptest::prelude::*;
use rand_chacha::ChaCha20Rng;
use sha2::Sha256;
type Transcript = HashTranscript<Sha256, ChaCha20Rng>;
#[test]
#[should_panic]
/// We can't handle 253 bit scalars
fn high_scalar_should_panic() {
let high_scalar = -ScalarQ::one();
let HP = PointP::random(&mut rand::thread_rng());
let HQ = &ScalarQ::random(&mut rand::thread_rng()) * &ED25519_BASEPOINT_TABLE;
let proof_system = CrossCurveDLEQ::<Transcript>::new(HP, HQ);
let _ = proof_system.prove(&high_scalar, &mut rand::thread_rng());
}
proptest! {
#![proptest_config(ProptestConfig::with_cases(3))]
#[test]
fn dl_secp256k1_ed25519_eq(
secret in ed25519_scalar(),
HP in any::<PointP>(),
HQ in ed25519_point(),
) {
let proof_system = CrossCurveDLEQ::<Transcript>::new(HP, HQ);
let (proof, claim) = proof_system.prove(&secret, &mut rand::thread_rng());
assert!(proof_system.verify(&proof, claim));
}
}
#[cfg(feature = "serde")]
proptest! {
#![proptest_config(ProptestConfig::with_cases(3))]
#[test]
fn serialization_roundtrip(
secret in ed25519_scalar(),
HP in any::<PointP>(),
HQ in ed25519_point(),
) {
let proof_system = CrossCurveDLEQ::<Transcript>::new(HP, HQ);
let (proof, _) = proof_system.prove(&secret, &mut rand::thread_rng());
let proof_serialized = bincode::serialize(&proof).unwrap();
let proof_deserialized: CrossCurveDLEQProof =
bincode::deserialize(&proof_serialized).unwrap();
assert_eq!(proof_deserialized, proof);
}
}
}