-
Notifications
You must be signed in to change notification settings - Fork 3
/
SOMoC_v1.0_standalone.py
443 lines (345 loc) · 17.7 KB
/
SOMoC_v1.0_standalone.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
#!/usr/bin/env python
# coding: utf-8
"""
@author: LIDeB UNLP
"""
# SOMoC is a clustering methodology based on the combination of molecular fingerprinting,
# dimensionality reduction by the Uniform Manifold Approximation and Projection (UMAP) algorithm
# and clustering with the Gaussian Mixture Model (GMM) algorithm.
##################################### Import packages ####################################
###########################################################################################
# The following packages are required: SKlearn, RDKit, UMAP, Molvs, validclust and Plotly.
# Please, meake sure you have them installed before running the program.
import pandas as pd
from array import array
import time
import os
from datetime import date
from pathlib import Path
import numpy as np
import random
import plotly.express as plx
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from sklearn.mixture import GaussianMixture as GMM
from sklearn.metrics import silhouette_score, calinski_harabasz_score, davies_bouldin_score, pairwise_distances
from validclust import dunn
import umap
from rdkit import Chem
from rdkit.Chem.EState.Fingerprinter import FingerprintMol
from molvs import Standardizer
###################################### CONFIGURATION ######################################
###########################################################################################
# Folder with files
# Input file is a .CSV file with one molecule per line in SMILES format.
# Molecules must be in the first column.
input_file = None
test_file = "test/focal_adhesion.csv"
# If you already know the number of clusters in your data, then set K to this value.
# Otherwise, set K=None to let SOMoC approaximate it by running a range of K values.
# Alternatively, you can use the generated elbowplot to find K yourself and re-reun SOMoC with a fixed K.
K = None # Optimal number of clusters K
# Perform molecule standardization using the MolVS package
smiles_standardization = True
### UMAP parameters ###
n_neighbors = 40 # The size of local neighborhood used for manifold approximation. Larger values result in more global views of the manifold, while smaller values result in more local data being preserved.
min_dist = 0.0 # The effective minimum distance between embedded points. Smaller values will result in a more clustered/clumped embedding where nearby points on the manifold are drawn closer together, while larger values will result on a more even dispersal of points.
random_state = 10 # Use a fixed seed for reproducibility.
metric = "jaccard" # The metric to use to compute distances in high dimensional space.
### GMM parameters ###
max_K = 25 # Max number of clusters to cosidering during the GMM loop
Kers = np.arange(2, max_K+1, 1) # Generate the range of K values to explore
iterations = 10 # Iterations of GMM to run for each K
n_init = 5 # Number of initializations on each GMM run, then just keep the best one.
init_params = 'kmeans' # How to initialize. Can be random or K-means
covariance_type = 'tied' # Type of covariance to consider: "spherical", "diag", "tied", "full"
warm_start = False
#################################### Helper functions #####################################
###########################################################################################
def Get_name(archive):
"""strip path and extension to return the name of a file"""
return os.path.basename(archive).split('.')[0]
def Make_dir(dirName: str):
"""Create a directory and not fail if it already exist"""
try:
os.makedirs(dirName)
except FileExistsError:
pass
def Get_input_data():
"""Get data from user input or use test dataset"""
if input_file is not None:
name = Get_name(input_file)
data = pd.read_csv(input_file, delimiter=',', header=None)
else:
name = Get_name(test_file)
data = pd.read_csv(test_file, delimiter=',', header=None)
return data, name
def Standardize_molecules(data):
"""Standardize molecules using the MolVS package https://molvs.readthedocs.io/en/latest/"""
print('='*50)
print("Standardize molecules")
print('By default SOMoC will standardize molecules before fingerprint calculation. However, you can disable standardization by setting smiles_standardization=False.')
time_start = time.time()
data_ = data.copy()
molec_clean = []
s = Standardizer()
list_of_smiles = data_.iloc[:,0]
# list_of_smiles = data['SMILES']
for i, molecule in enumerate(list_of_smiles, start = 1):
try:
mol = Chem.MolFromSmiles(molecule)
estandardized = s.super_parent(mol)
molec_clean.append(estandardized)
except:
print(f'Something went wrong with molecule number {i}')
data_['mol'] = molec_clean
print(f'{len(molec_clean)} molecules processed')
print(f'Standardization took {round(time.time()-time_start)} seconds')
return data_
def Fingerprints_calculator(data):
"""Calculate EState molecular fingerprints using the RDKit package"""
print('='*50)
print("Encoding")
time_start = time.time()
data_ = data.copy()
if 'mol' not in data_: # Check if already converted
data_['mol'] = data_['SMILES'].apply(lambda x: Chem.MolFromSmiles(x))
try:
_EState = [FingerprintMol(x)[0]
for x in data_['mol']] # [0]EState1 [1]EState2
EState = np.stack(_EState, axis=0)
except:
print("Oh no! There was a problem with Fingerprint calculation of some smiles")
print("Try using our standarization tool before clustering")
print("LIDeB Standarization tool: https://share.streamlit.io/capigol/lbb-game/main/juego_lbb.py")
print("Calculating EState molecular fingerprints...")
print(
f'Fingerprints calculation took {round(time.time()-time_start)} seconds')
print('='*50)
return EState # X data, fingerprints values as a np array
def UMAP_reduction(X):
"""Reduce feature space using the UMAP algorithm"""
print("Reducing")
print('Reducing feature space with UMAP...')
time_start = time.time()
if n_neighbors >= len(X):
print('The number of neighbors must be smaller than the number of molecules to cluster')
# Set a lower bound to the number of components
n_components = max(int(len(X)*0.01), 3)
UMAP_reducer = umap.UMAP(n_neighbors=n_neighbors, min_dist=min_dist, n_components=n_components, metric=metric,
random_state=random_state).fit(X)
embedding = UMAP_reducer.transform(X)
print(f'{embedding.shape[1]} features have been retained.')
print(f'UMAP took {round(time.time()-time_start)} seconds')
print('='*50)
return embedding, n_components
def GMM_clustering_loop(embeddings):
"""Run GMM clustering for a range of K values, to get the K which maximizes the SIL score"""
print("Clustering")
print(f'Running GMM clustering for {max_K} iterations..')
time_start = time.time()
temp = []
for n in Kers:
temp_sil = []
for x in range(iterations):
gmm = GMM(n, n_init=n_init, init_params=init_params, covariance_type=covariance_type,
warm_start=warm_start, random_state=x, verbose=0).fit(embeddings)
labels = gmm.predict(embeddings)
sil = round(silhouette_score(
embeddings, labels, metric='cosine'), 4)
temp_sil.append(sil)
temp.append([n, np.mean(temp_sil), np.std(temp_sil)])
results = pd.DataFrame(
temp, columns=['Clusters', 'Silhouette', 'sil_stdv'])
results_sorted = results.sort_values(['Silhouette'], ascending=False)
K_loop = results_sorted.iloc[0]['Clusters'] # Get max Sil K
print(f'GMM clustering loop took {round(time.time()-time_start)} seconds')
print(' '*100)
return results, int(K_loop)
def GMM_clustering_final(embeddings, K):
"""Cluster the dataset using the optimal K value, and calculate several CVIs"""
print('='*50)
print("Final clustering")
print(f'Running GMM with K = {K}')
time_start = time.time()
GMM_final = GMM(K, n_init=n_init, init_params=init_params, warm_start=warm_start,
covariance_type=covariance_type, random_state=random_state, verbose=0)
GMM_final.fit(embeddings)
labels_final = GMM_final.predict(embeddings)
if GMM_final.converged_:
print('GMM converged.')
else:
print('GMM did not converge. Please check you input configuration.')
sil_ok = round(float(silhouette_score(
embeddings, labels_final, metric='cosine')), 4)
db_score = round(davies_bouldin_score(embeddings, labels_final), 4)
ch_score = round(calinski_harabasz_score(embeddings, labels_final), 4)
dist_dunn = pairwise_distances(embeddings)
dunn_score = round(float(dunn(dist_dunn, labels_final)), 4)
valid_metrics = [sil_ok, db_score, ch_score, dunn_score]
sil_random, sil_random_st, db_random, db_random_st, ch_random, ch_random_st, dunn_random, dunn_random_st = Cluster_random(
embeddings)
random_means = [sil_random, db_random, ch_random, dunn_random]
random_sds = [sil_random_st, db_random_st, ch_random_st, dunn_random_st]
table_metrics = pd.DataFrame([valid_metrics, random_means, random_sds]).T
table_metrics = table_metrics.rename(index={0: 'Silhouette score', 1: "Davies Bouldin score",
2: 'Calinski Harabasz score', 3: 'Dunn Index'}, columns={0: "Value", 1: "Mean Random", 2: "SD Random"})
print(f'GMM clustering took {round(time.time()-time_start)} seconds')
print('='*50)
print("Validation metrics")
print(table_metrics)
cluster_final = pd.DataFrame({'cluster': labels_final}, index=data.index)
data_clustered = data.join(cluster_final)
if 'mol' in data_clustered.columns: # Check if mol column from standardization is present
try:
data_clustered['SMILES_standardized'] = data_clustered['mol'].apply(
lambda x: Chem.MolToSmiles(x))
data_clustered.drop(['mol'], axis=1, inplace=True)
except:
print('Something went wrong converting standardized molecules back to SMILES code..')
data_clustered.to_csv(f'results_SOMoC_{name}/{name}_Clustered_SOMoC.csv', index=True, header=True)
table_metrics.to_csv(f'results_SOMoC_{name}/{name}_Validation_SOMoC.csv', index=True, header=True)
return data_clustered
def Elbow_plot(results):
"""Draw the elbow plot of SIL score vs. K"""
fig = make_subplots(specs=[[{"secondary_y": False}]])
fig.add_trace(go.Scatter(x=results['Clusters'], y=results['Silhouette'],
mode='lines+markers', name='Silhouette',
error_y=dict(type='data', symmetric=True, array=results["sil_stdv"]),
hovertemplate="Clusters = %{x}<br>Silhouette = %{y}"),
secondary_y=False)
fig.update_layout(title="Silhouette vs. K", title_x=0.5,
title_font=dict(size=28, family='Calibri', color='black'),
legend_title_text = "Metric",
legend_title_font = dict(size=18, family='Calibri', color='black'),
legend_font = dict(size=15, family='Calibri', color='black'))
fig.update_xaxes(title_text='Number of clusters (K)', range=[2 - 0.5, max_K + 0.5],
tickfont=dict(family='Arial', size=16, color='black'),
title_font=dict(size=25, family='Calibri', color='black'))
fig.update_yaxes(title_text='Silhouette score',
tickfont=dict(family='Arial', size=16, color='black'),
title_font=dict(size=25, family='Calibri', color='black'), secondary_y=False)
fig.update_layout(margin=dict(t=60, r=20, b=20, l=20), autosize=True)
fig.write_html(f'results_SOMoC_{name}/{name}_elbowplot_SOMoC.html')
print('By dafault SOMoC uses the K which resulted in the highest Silhouette score.')
print('However, you can check the Silhouette vs. K elbow plot to choose the optimal K, identifying an inflection point in the curve (elbow method)')
print('Then, re-run SOMoC with a fixed K.')
print("Note: Silhouette score is bounded [-1,1], the closer to 1 the better")
def Distribution_plot(data_clustered):
"""Plot the clusters size distribution"""
sizes = data_clustered["cluster"].value_counts().to_frame()
sizes.index.names = ['Cluster']
sizes.columns = ['Size']
sizes.reset_index(drop=False, inplace=True)
sizes = sizes.astype({'Cluster': str, 'Size': int})
fig = plx.bar(sizes, x=sizes.Cluster, y=sizes.Size, color=sizes.Cluster)
fig.update_layout(legend_title="Cluster", plot_bgcolor='rgb(256,256,256)',
legend_title_font = dict(size=18, family='Calibri', color='black'),
legend_font = dict(size=15, family='Calibri', color='black'))
fig.update_xaxes(title_text='Cluster', showline=True, linecolor='black',
gridcolor='lightgrey', zerolinecolor='lightgrey',
tickfont=dict(family='Arial', size=16, color='black'),
title_font=dict(size=20, family='Calibri', color='black'))
fig.update_yaxes(title_text='Size', showline=True, linecolor='black',
gridcolor='lightgrey', zerolinecolor='lightgrey',
tickfont=dict(family='Arial', size=16, color='black'),
title_font=dict(size=20, family='Calibri', color='black'))
fig.write_html(f'results_SOMoC_{name}/{name}_size_distribution_SOMoC.html')
sizes.to_csv(f'results_SOMoC_{name}/{name}_Size_distribution_SOMoC.csv', index=True, header=True) # Write the .CSV file
return
def Cluster_random(embeddings: array):
"""Perform random clustering and calculate several CVIs"""
SILs = []
DBs = []
CHs = []
DUNNs = []
for i in range(500):
random.seed(a=i, version=2)
random_clusters = []
for x in list(range(len(embeddings))):
random_clusters.append(random.randint(0, K-1))
silhouette_random = silhouette_score(embeddings, np.ravel(random_clusters))
SILs.append(silhouette_random)
db_random = davies_bouldin_score(embeddings, np.ravel(random_clusters))
DBs.append(db_random)
ch_random = calinski_harabasz_score(embeddings, np.ravel(random_clusters))
CHs.append(ch_random)
dist_dunn = pairwise_distances(embeddings)
dunn_random = dunn(dist_dunn, np.ravel(random_clusters))
DUNNs.append(dunn_random)
sil_random = round(float(np.mean(SILs)), 4)
sil_random_st = round(np.std(SILs), 4)
db_random = round(np.mean(DBs), 4)
db_random_st = round(np.std(DBs), 4)
ch_random = round(np.mean(CHs), 4)
ch_random_st = round(np.std(CHs), 4)
dunn_random = round(float(np.mean(DUNNs)), 4)
dunn_random_st = round(np.std(DUNNs), 4)
return sil_random, sil_random_st, db_random, db_random_st, ch_random, ch_random_st, dunn_random, dunn_random_st
def Setting_info():
"""Create a dataframe with current run setting"""
today = date.today()
fecha = today.strftime("%d/%m/%Y")
settings = []
settings.append(["Date: ", fecha])
settings.append(["Setings:", ""])
settings.append(["", ""])
settings.append(["Fingerprint type:", "EState1"])
settings.append(["", ""])
settings.append(["UMAP", ""])
settings.append(["n_neighbors:", str(n_neighbors)])
settings.append(["min_dist:", str(min_dist)])
settings.append(["n_components:", str(n_components)])
settings.append(["random_state:", str(random_state)])
settings.append(["metric:", str(metric)])
settings.append(["", ""])
settings.append(["GMM", ""])
settings.append(["max Nº of clusters (K):", str(max_K)])
settings.append(["Optimal K:", str(K)])
settings.append(["iterations:", str(iterations)])
settings.append(["n_init:", str(n_init)])
settings.append(["init_params", str(init_params)])
settings.append(["covariance_type", str(covariance_type)])
settings.append(["", ""])
settings.append(["Total running time : ", total_time])
settings.append(["", ""])
settings_df = pd.DataFrame(settings)
settings_df.to_csv(f'results_SOMoC_{name}/{name}_Settings_SOMoC.csv', index=True, header=False)
return
####################################### SOMoC main ########################################
###########################################################################################
if __name__ == '__main__':
start = time.time()
print('-'*50)
# Get input data
data_raw, name = Get_input_data()
# Create output dir
Make_dir(f'results_SOMoC_{name}')
# Standardize molecules
if smiles_standardization == True:
data = Standardize_molecules(data_raw)
else:
print('Skipping molecules standardization..\n')
data = data_raw
# Calculate Fingerprints
X = Fingerprints_calculator(data)
# Reduce feature space with UMAP
embedding, n_components = UMAP_reduction(X)
# If K is not set, run the GMM clustering loop to get K
if K is None:
results, K = GMM_clustering_loop(embedding)
Elbow_plot(results)
# Run the final clustering and calculate all CVIs
data_clustered = GMM_clustering_final(embedding, K)
# Generate distribution plot and .CSV file
Distribution_plot(data_clustered)
end = time.time()
hours, rem = divmod(end-start, 3600)
minutes, seconds = divmod(rem, 60)
total_time = "{:0>2}:{:0>2}:{:05.2f}".format(int(hours),int(minutes),seconds)
# Write the settings file
settings = Setting_info()
print('='*50)
print('ALL DONE !')
print(f'SOMoC run took {total_time}')
print('='*50)