-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathheng_main.py
326 lines (284 loc) · 14.1 KB
/
heng_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
# -*- coding:utf-8 -*-
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torchvision.transforms as transforms
from data.cifar import CIFAR10, CIFAR100
from data.mnist import MNIST
from model import CNN
import argparse, sys
import numpy as np
import datetime
import shutil
from loss import loss_coteaching
from scipy.special import psi,polygamma
from numpy.linalg.linalg import inv
parser = argparse.ArgumentParser()
parser.add_argument('--lr', type = float, default = 0.001)
parser.add_argument('--result_dir', type = str, help = 'dir to save result txt files', default = 'results/')
parser.add_argument('--noise_rate', type = float, help = 'corruption rate, should be less than 1', default = 0.2)
parser.add_argument('--forget_rate', type = float, help = 'forget rate', default = None)
parser.add_argument('--noise_type', type = str, help='[pairflip, symmetric]', default='pairflip')
parser.add_argument('--n_epoch', type=int, default=200)
parser.add_argument('--n_iter', type=int, default=1)
parser.add_argument('--n_samples', type=int, default=1)
parser.add_argument('--fisher_samples', type=int, default=1)
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--delta', type=float, default=1)
parser.add_argument('--print_freq', type=int, default=50)
parser.add_argument('--num_workers', type=int, default=4, help='how many subprocesses to use for data loading')
parser.add_argument('--num_iter_per_epoch', type=int, default=400)
parser.add_argument('--epoch_decay_start', type=int, default=200)
args = parser.parse_args()
# Seed
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
# Hyper Parameters
batch_size = 128
learning_rate = args.lr
# load dataset
input_channel=3
num_classes=10
args.top_bn = False
args.epoch_decay_start = 80
# args.epoch_decay_start = 200
args.n_epoch = 200
train_dataset = CIFAR10(root='./data/',
download=True,
train=True,
transform=transforms.ToTensor(),
noise_type=args.noise_type,
noise_rate=args.noise_rate
)
test_dataset = CIFAR10(root='./data/',
download=True,
train=False,
transform=transforms.ToTensor(),
noise_type=args.noise_type,
noise_rate=args.noise_rate
)
if args.forget_rate is None:
forget_rate=args.noise_rate
else:
forget_rate=args.forget_rate
noise_or_not = train_dataset.noise_or_not
# Adjust learning rate and betas for Adam Optimizer
mom1 = 0.9
mom2 = 0.1
alpha_plan=np.ones(args.n_epoch,dtype=float)*learning_rate
# alpha_plan[:int(args.n_epoch*0.5)] = [learning_rate] * int(args.n_epoch*0.5)
# alpha_plan[int(args.n_epoch*0.5):int(args.n_epoch*0.75)] = [learning_rate*0.1] * int(args.n_epoch*0.25)
# alpha_plan[int(args.n_epoch*0.75):] = [learning_rate*0.01] * int(args.n_epoch*0.25)
beta1_plan = [mom1] * args.n_epoch
for i in range(args.epoch_decay_start, args.n_epoch):
alpha_plan[i] = float(args.n_epoch - i) / (args.n_epoch - args.epoch_decay_start) * learning_rate
beta1_plan[i] = mom2
def adjust_learning_rate(optimizer, epoch):
for param_group in optimizer.param_groups:
param_group['lr']=alpha_plan[epoch]
param_group['momentum']=beta1_plan[epoch] # Only change beta1
save_dir = args.result_dir +'/cifar10/'
if not os.path.exists(save_dir):
os.system('mkdir -p %s' % save_dir)
nowTime=datetime.datetime.now().strftime('%Y-%m-%d-%H:%M:%S')
model_str='cifar10_heng_coteaching_'+args.noise_type+'_'+str(args.noise_rate)+("-%s.txt" % args.seed)
txtfile=save_dir+"/"+model_str
# Data Loader (Input Pipeline)
print('loading dataset...')
num_test = len(test_dataset)
indices = list(range(num_test))
split = int(np.floor(0.5 * num_test))
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
num_workers=args.num_workers,
drop_last=True,
shuffle=True)
val_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
num_workers=args.num_workers,
sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[:split]),
drop_last=True,
shuffle=False)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
num_workers=args.num_workers,
sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[split:num_test]),
drop_last=True,
shuffle=False)
def accuracy(logit, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
output = F.softmax(logit, dim=1)
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
# Train the Model
def train(train_loader,epoch, model1, optimizer1, model2, optimizer2, rate_schedule):
print('Training %s...' % model_str)
pure_ratio_list=[]
pure_ratio_1_list=[]
pure_ratio_2_list=[]
train_total=0
train_correct=0
train_total2=0
train_correct2=0
for i, (images, labels, indexes) in enumerate(train_loader):
ind=indexes.cpu().numpy().transpose()
if i>args.num_iter_per_epoch:
break
images = Variable(images).cuda()
labels = Variable(labels).cuda()
# Forward + Backward + Optimize
logits1=model1(images)
prec1, _ = accuracy(logits1, labels, topk=(1, 5))
train_total+=1
train_correct+=prec1
logits2 = model2(images)
prec2, _ = accuracy(logits2, labels, topk=(1, 5))
train_total2+=1
train_correct2+=prec2
rate_schedule[epoch]=min(rate_schedule[epoch],0.99)
loss_1, loss_2, pure_ratio_1, pure_ratio_2 = loss_coteaching(logits1, logits2, labels, rate_schedule[epoch], ind, noise_or_not)
pure_ratio_1_list.append(100*pure_ratio_1)
pure_ratio_2_list.append(100*pure_ratio_2)
optimizer1.zero_grad()
loss_1.backward()
optimizer1.step()
optimizer2.zero_grad()
loss_2.backward()
optimizer2.step()
if (i+1) % args.print_freq == 0:
print ('Epoch [%d/%d], Iter [%d/%d] Training Accuracy1: %.4f, Training Accuracy2: %.4f, Loss1: %.4f, Loss2: %.4f, Pure Ratio1: %.4f, Pure Ratio2 %.4f'
%(epoch+1, args.n_epoch, i+1, len(train_dataset)//batch_size, prec1, prec2, loss_1.item(), loss_2.item(), np.sum(pure_ratio_1_list)/len(pure_ratio_1_list), np.sum(pure_ratio_2_list)/len(pure_ratio_2_list)))
train_acc1=float(train_correct)/float(train_total)
train_acc2=float(train_correct2)/float(train_total2)
return train_acc1, train_acc2, pure_ratio_1_list, pure_ratio_2_list
# Evaluate the Model
def evaluate(test_loader, model1, model2):
print('Evaluating %s...' % model_str)
model1.eval() # Change model to 'eval' mode.
correct1 = 0
total1 = 0
for images, labels, _ in test_loader:
images = Variable(images).cuda()
logits1 = model1(images)
outputs1 = F.softmax(logits1, dim=1)
_, pred1 = torch.max(outputs1.data, 1)
total1 += labels.size(0)
correct1 += (pred1.cpu() == labels).sum()
model2.eval() # Change model to 'eval' mode
correct2 = 0
total2 = 0
for images, labels, _ in test_loader:
images = Variable(images).cuda()
logits2 = model2(images)
outputs2 = F.softmax(logits2, dim=1)
_, pred2 = torch.max(outputs2.data, 1)
total2 += labels.size(0)
correct2 += (pred2.cpu() == labels).sum()
acc1 = 100*float(correct1)/float(total1)
acc2 = 100*float(correct2)/float(total2)
return acc1, acc2
def black_box_function(opt_param):
mean_pure_ratio1=0
mean_pure_ratio2=0
print('building model...')
cnn1 = CNN(n_outputs=num_classes)
cnn1.cuda()
print(cnn1.parameters)
optimizer1 = torch.optim.Adam(cnn1.parameters(), lr=learning_rate)
cnn2 = CNN(n_outputs=num_classes)
cnn2.cuda()
print(cnn2.parameters)
optimizer2 = torch.optim.Adam(cnn2.parameters(), lr=learning_rate)
# rate_schedule=opt_param[0]*(1-np.exp(-opt_param[2]*np.power(np.arange(args.n_epoch,dtype=float),opt_param[1])))+(1-opt_param[0])*(1-1/np.power((opt_param[4]*np.arange(args.n_epoch,dtype=float)+1),opt_param[3]))-np.power(np.arange(args.n_epoch,dtype=float)/args.n_epoch,opt_param[5])*opt_param[6]
rate_schedule=opt_param[0]*(1-np.exp(-opt_param[2]*np.power(np.arange(args.n_epoch,dtype=float),opt_param[1])))\
+(1-opt_param[0])*opt_param[7]*(1-1/np.power((opt_param[4]*np.arange(args.n_epoch,dtype=float)+1),opt_param[3]))\
+(1-opt_param[0])*(1-opt_param[7])*(1-np.log(1+opt_param[8])/np.log(1+opt_param[8]+opt_param[9]*np.arange(args.n_epoch,dtype=float)))\
-np.power(np.arange(args.n_epoch,dtype=float)/args.n_epoch,opt_param[5])*opt_param[6]\
-np.log(1+np.power(np.arange(args.n_epoch,dtype=float),opt_param[11]))/np.log(1+np.power(args.n_epoch,opt_param[11]))*opt_param[10]
print('Schedule:',rate_schedule,opt_param)
epoch=0
train_acc1=0
train_acc2=0
# evaluate models with random weights
val_acc1, val_acc2=evaluate(val_loader, cnn1, cnn2)
test_acc1, test_acc2=evaluate(test_loader, cnn1, cnn2)
print('Epoch [%d/%d] Test Accuracy on the %s test images: Model1 %.4f %% Model2 %.4f %% Pure Ratio1 %.4f %% Pure Ratio2 %.4f %%' % (epoch+1, args.n_epoch, len(test_dataset), test_acc1, test_acc2, mean_pure_ratio1, mean_pure_ratio2))
# save results
with open(txtfile, "a") as myfile:
myfile.write(str(int(epoch)) + ' ' + str(train_acc1) +' ' + str(train_acc2) +' ' +str(val_acc1)+' ' +str(val_acc2)+' ' + str(test_acc1) + " " + str(test_acc2) + ' ' + str(mean_pure_ratio1) + ' ' + str(mean_pure_ratio2) + ' ' + str(rate_schedule[epoch]) + "\n")
# training
for epoch in range(1, args.n_epoch):
# train models
cnn1.train()
adjust_learning_rate(optimizer1, epoch)
cnn2.train()
adjust_learning_rate(optimizer2, epoch)
train_acc1, train_acc2, pure_ratio_1_list, pure_ratio_2_list=train(train_loader, epoch, cnn1, optimizer1, cnn2, optimizer2, rate_schedule)
# evaluate models
val_acc1, val_acc2=evaluate(val_loader, cnn1, cnn2)
test_acc1, test_acc2=evaluate(test_loader, cnn1, cnn2)
# save results
mean_pure_ratio1 = sum(pure_ratio_1_list)/len(pure_ratio_1_list)
mean_pure_ratio2 = sum(pure_ratio_2_list)/len(pure_ratio_2_list)
print('Epoch [%d/%d] Test Accuracy on the %s test images: Model1 %.4f %% Model2 %.4f %%, Pure Ratio 1 %.4f %%, Pure Ratio 2 %.4f %%' % (epoch+1, args.n_epoch, len(test_dataset), test_acc1, test_acc2, mean_pure_ratio1, mean_pure_ratio2))
with open(txtfile, "a") as myfile:
myfile.write(str(int(epoch)) + ' ' + str(train_acc1) +' ' + str(train_acc2) +' ' +str(val_acc1)+' ' +str(val_acc2)+' ' + str(test_acc1) + " " + str(test_acc2) + ' ' + str(mean_pure_ratio1) + ' ' + str(mean_pure_ratio2) + ' ' + str(rate_schedule[epoch]) + "\n")
return (test_acc1+test_acc2)/200
def main():
np.random.seed(args.seed)
cur_acc=np.zeros(args.n_samples)
idx=np.zeros(args.n_samples)
num_param=12
max_pt=np.zeros(num_param)
hyphyp=np.ones(num_param*2)
hypgrad=np.zeros((num_param*2,1))
hessian=np.zeros((num_param*2,num_param*2))
for iii in range(args.n_iter):
print('Distribution:',hyphyp)
cur_param=np.zeros((args.n_samples,num_param))
loggrad=np.zeros((args.n_samples,num_param*2,1))
loghess=np.zeros((args.n_samples,num_param*2,num_param*2))
for jjj in range(args.n_samples):
for kkk in range(num_param):
cur_param[jjj][kkk]=np.random.beta(hyphyp[2*kkk],hyphyp[2*kkk+1])
cur_param[jjj][kkk]=np.random.beta(hyphyp[2*kkk],hyphyp[2*kkk+1])
cur_param[jjj][kkk]=np.random.beta(hyphyp[2*kkk],hyphyp[2*kkk+1])
loggrad[jjj][2*kkk][0]=np.log(cur_param[jjj][kkk])+psi(hyphyp[2*kkk]+hyphyp[2*kkk+1])-psi(hyphyp[2*kkk])
loggrad[jjj][2*kkk+1][0]=np.log(1-cur_param[jjj][kkk])+psi(hyphyp[2*kkk]+hyphyp[2*kkk+1])-psi(hyphyp[2*kkk+1])
loghess[jjj][2*kkk][2*kkk]=polygamma(1,hyphyp[2*kkk]+hyphyp[2*kkk+1])-polygamma(1,hyphyp[2*kkk])
loghess[jjj][2*kkk][2*kkk+1]=polygamma(1,hyphyp[2*kkk]+hyphyp[2*kkk+1])
loghess[jjj][2*kkk+1][2*kkk]=polygamma(1,hyphyp[2*kkk]+hyphyp[2*kkk+1])
loghess[jjj][2*kkk+1][2*kkk+1]=polygamma(1,hyphyp[2*kkk]+hyphyp[2*kkk+1])-polygamma(1,hyphyp[2*kkk+1])
cur_param[jjj][2]*=0.5
cur_param[jjj][4]*=0.5
cur_param[jjj][9]*=0.5
cur_param[jjj][5]/=0.5
cur_param[jjj][6]*=0.5
cur_param[jjj][11]/=0.5
cur_param[jjj][10]*=0.5
cur_acc[jjj]=black_box_function(cur_param[jjj])
idx=np.argsort(cur_acc)
hypgrad=loggrad[idx[-1]]
hessian=loggrad[idx[-1]]*loggrad[idx[-1]].T+loghess[idx[-1]]
hypgrad=hypgrad/args.n_samples
hessian=hessian/args.n_samples
u, s, vh = np.linalg.svd(hessian,full_matrices=False)
print(u,s,vh)
s=np.maximum(s,1e-5)
hessian=np.dot(np.dot(u,np.diag(s)),vh)
hessian=inv(hessian)
hypgrad=args.delta*hessian*hypgrad
hyphyp=hyphyp+hypgrad[:,0]
hyphyp=np.maximum(hyphyp,1)
if __name__=='__main__':
main()