-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
modules.py
306 lines (247 loc) · 11.2 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
# -*- coding: utf-8 -*-
#/usr/bin/python3
'''
Feb. 2019 by kyubyong park.
https://www.github.com/kyubyong/transformer.
Building blocks for Transformer
'''
import numpy as np
import tensorflow as tf
def ln(inputs, epsilon = 1e-8, scope="ln"):
'''Applies layer normalization. See https://arxiv.org/abs/1607.06450.
inputs: A tensor with 2 or more dimensions, where the first dimension has `batch_size`.
epsilon: A floating number. A very small number for preventing ZeroDivision Error.
scope: Optional scope for `variable_scope`.
Returns:
A tensor with the same shape and data dtype as `inputs`.
'''
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
inputs_shape = inputs.get_shape()
params_shape = inputs_shape[-1:]
mean, variance = tf.nn.moments(inputs, [-1], keep_dims=True)
beta= tf.get_variable("beta", params_shape, initializer=tf.zeros_initializer())
gamma = tf.get_variable("gamma", params_shape, initializer=tf.ones_initializer())
normalized = (inputs - mean) / ( (variance + epsilon) ** (.5) )
outputs = gamma * normalized + beta
return outputs
def get_token_embeddings(vocab_size, num_units, zero_pad=True):
'''Constructs token embedding matrix.
Note that the column of index 0's are set to zeros.
vocab_size: scalar. V.
num_units: embedding dimensionalty. E.
zero_pad: Boolean. If True, all the values of the first row (id = 0) should be constant zero
To apply query/key masks easily, zero pad is turned on.
Returns
weight variable: (V, E)
'''
with tf.variable_scope("shared_weight_matrix"):
embeddings = tf.get_variable('weight_mat',
dtype=tf.float32,
shape=(vocab_size, num_units),
initializer=tf.contrib.layers.xavier_initializer())
if zero_pad:
embeddings = tf.concat((tf.zeros(shape=[1, num_units]),
embeddings[1:, :]), 0)
return embeddings
def scaled_dot_product_attention(Q, K, V, key_masks,
causality=False, dropout_rate=0.,
training=True,
scope="scaled_dot_product_attention"):
'''See 3.2.1.
Q: Packed queries. 3d tensor. [N, T_q, d_k].
K: Packed keys. 3d tensor. [N, T_k, d_k].
V: Packed values. 3d tensor. [N, T_k, d_v].
key_masks: A 2d tensor with shape of [N, key_seqlen]
causality: If True, applies masking for future blinding
dropout_rate: A floating point number of [0, 1].
training: boolean for controlling droput
scope: Optional scope for `variable_scope`.
'''
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
d_k = Q.get_shape().as_list()[-1]
# dot product
outputs = tf.matmul(Q, tf.transpose(K, [0, 2, 1])) # (N, T_q, T_k)
# scale
outputs /= d_k ** 0.5
# key masking
outputs = mask(outputs, key_masks=key_masks, type="key")
# causality or future blinding masking
if causality:
outputs = mask(outputs, type="future")
# softmax
outputs = tf.nn.softmax(outputs)
attention = tf.transpose(outputs, [0, 2, 1])
tf.summary.image("attention", tf.expand_dims(attention[:1], -1))
# # query masking
# outputs = mask(outputs, Q, K, type="query")
# dropout
outputs = tf.layers.dropout(outputs, rate=dropout_rate, training=training)
# weighted sum (context vectors)
outputs = tf.matmul(outputs, V) # (N, T_q, d_v)
return outputs
def mask(inputs, key_masks=None, type=None):
"""Masks paddings on keys or queries to inputs
inputs: 3d tensor. (h*N, T_q, T_k)
key_masks: 3d tensor. (N, 1, T_k)
type: string. "key" | "future"
e.g.,
>> inputs = tf.zeros([2, 2, 3], dtype=tf.float32)
>> key_masks = tf.constant([[0., 0., 1.],
[0., 1., 1.]])
>> mask(inputs, key_masks=key_masks, type="key")
array([[[ 0.0000000e+00, 0.0000000e+00, -4.2949673e+09],
[ 0.0000000e+00, 0.0000000e+00, -4.2949673e+09]],
[[ 0.0000000e+00, -4.2949673e+09, -4.2949673e+09],
[ 0.0000000e+00, -4.2949673e+09, -4.2949673e+09]],
[[ 0.0000000e+00, 0.0000000e+00, -4.2949673e+09],
[ 0.0000000e+00, 0.0000000e+00, -4.2949673e+09]],
[[ 0.0000000e+00, -4.2949673e+09, -4.2949673e+09],
[ 0.0000000e+00, -4.2949673e+09, -4.2949673e+09]]], dtype=float32)
"""
padding_num = -2 ** 32 + 1
if type in ("k", "key", "keys"):
key_masks = tf.to_float(key_masks)
key_masks = tf.tile(key_masks, [tf.shape(inputs)[0] // tf.shape(key_masks)[0], 1]) # (h*N, seqlen)
key_masks = tf.expand_dims(key_masks, 1) # (h*N, 1, seqlen)
outputs = inputs + key_masks * padding_num
# elif type in ("q", "query", "queries"):
# # Generate masks
# masks = tf.sign(tf.reduce_sum(tf.abs(queries), axis=-1)) # (N, T_q)
# masks = tf.expand_dims(masks, -1) # (N, T_q, 1)
# masks = tf.tile(masks, [1, 1, tf.shape(keys)[1]]) # (N, T_q, T_k)
#
# # Apply masks to inputs
# outputs = inputs*masks
elif type in ("f", "future", "right"):
diag_vals = tf.ones_like(inputs[0, :, :]) # (T_q, T_k)
tril = tf.linalg.LinearOperatorLowerTriangular(diag_vals).to_dense() # (T_q, T_k)
future_masks = tf.tile(tf.expand_dims(tril, 0), [tf.shape(inputs)[0], 1, 1]) # (N, T_q, T_k)
paddings = tf.ones_like(future_masks) * padding_num
outputs = tf.where(tf.equal(future_masks, 0), paddings, inputs)
else:
print("Check if you entered type correctly!")
return outputs
def multihead_attention(queries, keys, values, key_masks,
num_heads=8,
dropout_rate=0,
training=True,
causality=False,
scope="multihead_attention"):
'''Applies multihead attention. See 3.2.2
queries: A 3d tensor with shape of [N, T_q, d_model].
keys: A 3d tensor with shape of [N, T_k, d_model].
values: A 3d tensor with shape of [N, T_k, d_model].
key_masks: A 2d tensor with shape of [N, key_seqlen]
num_heads: An int. Number of heads.
dropout_rate: A floating point number.
training: Boolean. Controller of mechanism for dropout.
causality: Boolean. If true, units that reference the future are masked.
scope: Optional scope for `variable_scope`.
Returns
A 3d tensor with shape of (N, T_q, C)
'''
d_model = queries.get_shape().as_list()[-1]
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
# Linear projections
Q = tf.layers.dense(queries, d_model, use_bias=True) # (N, T_q, d_model)
K = tf.layers.dense(keys, d_model, use_bias=True) # (N, T_k, d_model)
V = tf.layers.dense(values, d_model, use_bias=True) # (N, T_k, d_model)
# Split and concat
Q_ = tf.concat(tf.split(Q, num_heads, axis=2), axis=0) # (h*N, T_q, d_model/h)
K_ = tf.concat(tf.split(K, num_heads, axis=2), axis=0) # (h*N, T_k, d_model/h)
V_ = tf.concat(tf.split(V, num_heads, axis=2), axis=0) # (h*N, T_k, d_model/h)
# Attention
outputs = scaled_dot_product_attention(Q_, K_, V_, key_masks, causality, dropout_rate, training)
# Restore shape
outputs = tf.concat(tf.split(outputs, num_heads, axis=0), axis=2 ) # (N, T_q, d_model)
# Residual connection
outputs += queries
# Normalize
outputs = ln(outputs)
return outputs
def ff(inputs, num_units, scope="positionwise_feedforward"):
'''position-wise feed forward net. See 3.3
inputs: A 3d tensor with shape of [N, T, C].
num_units: A list of two integers.
scope: Optional scope for `variable_scope`.
Returns:
A 3d tensor with the same shape and dtype as inputs
'''
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
# Inner layer
outputs = tf.layers.dense(inputs, num_units[0], activation=tf.nn.relu)
# Outer layer
outputs = tf.layers.dense(outputs, num_units[1])
# Residual connection
outputs += inputs
# Normalize
outputs = ln(outputs)
return outputs
def label_smoothing(inputs, epsilon=0.1):
'''Applies label smoothing. See 5.4 and https://arxiv.org/abs/1512.00567.
inputs: 3d tensor. [N, T, V], where V is the number of vocabulary.
epsilon: Smoothing rate.
For example,
```
import tensorflow as tf
inputs = tf.convert_to_tensor([[[0, 0, 1],
[0, 1, 0],
[1, 0, 0]],
[[1, 0, 0],
[1, 0, 0],
[0, 1, 0]]], tf.float32)
outputs = label_smoothing(inputs)
with tf.Session() as sess:
print(sess.run([outputs]))
>>
[array([[[ 0.03333334, 0.03333334, 0.93333334],
[ 0.03333334, 0.93333334, 0.03333334],
[ 0.93333334, 0.03333334, 0.03333334]],
[[ 0.93333334, 0.03333334, 0.03333334],
[ 0.93333334, 0.03333334, 0.03333334],
[ 0.03333334, 0.93333334, 0.03333334]]], dtype=float32)]
```
'''
V = inputs.get_shape().as_list()[-1] # number of channels
return ((1-epsilon) * inputs) + (epsilon / V)
def positional_encoding(inputs,
maxlen,
masking=True,
scope="positional_encoding"):
'''Sinusoidal Positional_Encoding. See 3.5
inputs: 3d tensor. (N, T, E)
maxlen: scalar. Must be >= T
masking: Boolean. If True, padding positions are set to zeros.
scope: Optional scope for `variable_scope`.
returns
3d tensor that has the same shape as inputs.
'''
E = inputs.get_shape().as_list()[-1] # static
N, T = tf.shape(inputs)[0], tf.shape(inputs)[1] # dynamic
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
# position indices
position_ind = tf.tile(tf.expand_dims(tf.range(T), 0), [N, 1]) # (N, T)
# First part of the PE function: sin and cos argument
position_enc = np.array([
[pos / np.power(10000, (i-i%2)/E) for i in range(E)]
for pos in range(maxlen)])
# Second part, apply the cosine to even columns and sin to odds.
position_enc[:, 0::2] = np.sin(position_enc[:, 0::2]) # dim 2i
position_enc[:, 1::2] = np.cos(position_enc[:, 1::2]) # dim 2i+1
position_enc = tf.convert_to_tensor(position_enc, tf.float32) # (maxlen, E)
# lookup
outputs = tf.nn.embedding_lookup(position_enc, position_ind)
# masks
if masking:
outputs = tf.where(tf.equal(inputs, 0), inputs, outputs)
return tf.to_float(outputs)
def noam_scheme(init_lr, global_step, warmup_steps=4000.):
'''Noam scheme learning rate decay
init_lr: initial learning rate. scalar.
global_step: scalar.
warmup_steps: scalar. During warmup_steps, learning rate increases
until it reaches init_lr.
'''
step = tf.cast(global_step + 1, dtype=tf.float32)
return init_lr * warmup_steps ** 0.5 * tf.minimum(step * warmup_steps ** -1.5, step ** -0.5)