-
Notifications
You must be signed in to change notification settings - Fork 3
/
EMFINet_train.py
157 lines (117 loc) · 4.74 KB
/
EMFINet_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import torch
from torch.autograd import Variable
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision import transforms
import torch.optim as optim
import glob
from Data_loader import RescaleT
from Data_loader import ToTensorLab
from Data_loader import SalObjDataset
from model import EMFINet
import pytorch_ssim
import pytorch_iou
bce_loss = nn.BCELoss(reduction='mean')
ssim_loss = pytorch_ssim.SSIM(window_size=11,size_average=True)
iou_loss = pytorch_iou.IOU(size_average=True)
def muti_loss(pred,target):
bce_out = bce_loss(pred,target)
ssim_out = 1 - ssim_loss(pred,target)
iou_out = iou_loss(pred,target)
loss = bce_out + ssim_out + iou_out
return loss
def muti_loss_fusion(d1,d2,d3,d4,d5,d6,d7,d8,d9, labels_v):
loss1 = muti_loss(d1,labels_v)
loss2 = muti_loss(d2,labels_v)
loss3 = muti_loss(d3,labels_v)
loss4 = muti_loss(d4,labels_v)
loss5 = muti_loss(d5,labels_v)
loss6 = muti_loss(d6,labels_v)
loss7 = muti_loss(d7,labels_v)
loss8 = muti_loss(d8,labels_v)
loss9 = muti_loss(d9,labels_v)
print("l1: %.3f, l2: %.3f, l3: %.3f, l4: %.3f, l5: %.3f, l6: %.3f, l7: %.3f , l8:%.3f , l9:%.3f"%(loss1.item(),loss2.item(),\
loss3.item(),loss4.item(),loss5.item(),loss6.item(),loss7.item(),loss8.item(),loss9.item()))
loss_label = loss1 + loss2 + loss3 + loss4 + loss5 + loss6 +loss7 + loss8 + loss9
return loss_label
tra_image_dir = "/train_images/"
tra_label_dir = "/train_labels/"
tra_edge_dir= "/train_edges/"
image_ext = '.jpg'
label_ext = '.png'
edge_ext = '.png'
model_dir = "/model_save/"
epoch_num = 1000
batch_size_train = 4
train_num = 0
tra_img_name_list = glob.glob(tra_image_dir + '*' + image_ext)
tra_lbl_name_list = []
tra_edge_name_list = []
for img_path in tra_img_name_list:
img_name = img_path.split("/")[-1]
a = img_name.split(".")
b = a[0:-1]
imidx = b[0]
for i in range(1,len(b)):
imidx = imidx + "." + b[i]
tra_lbl_name_list.append(tra_label_dir + imidx + label_ext)
tra_edge_name_list.append(tra_edge_dir + imidx + edge_ext)
print("---")
print("train images: ", len(tra_img_name_list))
print("train labels: ", len(tra_lbl_name_list))
print("train edges: ",len(tra_edge_name_list))
print("---")
train_num = len(tra_img_name_list)
salobj_dataset = SalObjDataset(
img_name_list=tra_img_name_list,
lbl_name_list=tra_lbl_name_list,
edge_name_list=tra_edge_name_list,
transform=transforms.Compose([
RescaleT(256),
ToTensorLab(flag=0)]))
salobj_dataloader = DataLoader(salobj_dataset, batch_size=batch_size_train, shuffle=True, num_workers=0)
net = EMFINet()
if torch.cuda.is_available():
net.cuda()
print("---define optimizer...")
optimizer = optim.Adam(net.parameters(), lr=1e-4, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
def main():
print("---start training...")
ite_num = 0
running_loss = 0.0
ite_num4val = 0
for epoch in range(0, epoch_num):
net.train()
for i, data in enumerate(salobj_dataloader):
ite_num = ite_num + 1
ite_num4val = ite_num4val + 1
inputs, labels, edges = data['image'], data['label'], data['edge']
inputs = inputs.type(torch.FloatTensor)
labels = labels.type(torch.FloatTensor)
edges = edges.type(torch.FloatTensor)
if torch.cuda.is_available():
inputs_v, labels_v = Variable(inputs.cuda(), requires_grad=False), Variable(labels.cuda(),requires_grad=False)
edges_v = Variable(edges.cuda(), requires_grad=False)
else:
inputs_v, labels_v = Variable(inputs, requires_grad=False), Variable(labels, requires_grad=False)
edges_v = Variable(edges, requires_grad=False)
optimizer.zero_grad()
de,d1,d2,d3,d4,d5,d6,d7,d8,d9 = net(inputs_v)
loss_label = muti_loss_fusion(d1,d2,d3,d4,d5,d6,d7,d8,d9, labels_v)
loss_edge = bce_loss(de,edges_v)
print("l1_e: %.3f"%(loss_edge.item()))
loss = loss_label + loss_edge
loss.backward()
optimizer.step()
running_loss += loss.item()
del de,d1,d2,d3,d4,d5,d6,d7,d8,d9,loss,loss_label,loss_edge
print("[epoch: %3d/%3d, batch: %5d/%5d, ite: %d] train loss: %.3f \n" % (
epoch + 1, epoch_num, (i + 1) * batch_size_train, train_num, ite_num, running_loss / ite_num4val))
if ite_num % 1000 == 0:
torch.save(net.state_dict(), model_dir + "MYNet_%d_%d.pth" % (ite_num, epoch))
running_loss = 0.0
net.train()
ite_num4val = 0
print('-------------Congratulations! Training Done!!!-------------')
if __name__ == '__main__':
main()