-
Notifications
You must be signed in to change notification settings - Fork 19
/
train.py
568 lines (488 loc) · 25.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
"""
Training process of linked dynamic graph CNN. We borrow the training code
from the DGCNN, and add the code of retraining classifier.
Reference code: https://github.com/WangYueFt/dgcnn
@author: Kuangen Zhang
"""
import argparse
import numpy as np
import tensorflow as tf
import socket
import importlib
import os
import sys
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(BASE_DIR)
sys.path.append(os.path.join(BASE_DIR, 'models'))
sys.path.append(os.path.join(BASE_DIR, 'utils'))
sys.path.append(os.path.join(BASE_DIR, 'VisionProcess'))
import provider
from FileIO import FileIO
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=int, default=0, help='GPU to use [default: GPU 0]')
parser.add_argument('--model', default='ldgcnn', help='Model name: dgcnn')
parser.add_argument('--log_dir', default='log', help='Log dir [default: log]')
parser.add_argument('--num_point', type=int, default=1024, help='Point Number [256/512/1024/2048] [default: 1024]')
parser.add_argument('--max_epoch', type=int, default=250, help='Epoch to run [default: 250]')
parser.add_argument('--batch_size', type=int, default= 16, help='Batch Size during training [default: 32]')
parser.add_argument('--learning_rate', type=float, default=0.001, help='Initial learning rate [default: 0.001]')
parser.add_argument('--momentum', type=float, default=0.9, help='Initial learning rate [default: 0.9]')
parser.add_argument('--optimizer', default='adam', help='adam or momentum [default: adam]')
parser.add_argument('--decay_step', type=int, default=200000, help='Decay step for lr decay [default: 200000]')
parser.add_argument('--decay_rate', type=float, default=0.7, help='Decay rate for lr decay [default: 0.8]')
# The parameters of retrained classifier
parser.add_argument('--model_classifier', default='ldgcnn_classifier', help='Model name: dgcnn')
parser.add_argument('--num_feature_classifier', type=int, default= 3072, help='Point Number [1024/1984] [default: 1024]')
parser.add_argument('--max_epoch_classifier', type=int, default=100, help='Epoch to run [default: 250]')
parser.add_argument('--optimizer_classifier', default='momentum', help='adam or momentum [default: adam]')
FLAGS = parser.parse_args()
NUM_FEATURE_CLS = FLAGS.num_feature_classifier
OPTIMIZER_CLS = FLAGS.optimizer_classifier
MAX_EPOCH_CLS = FLAGS.max_epoch_classifier
MODEL_CLS = importlib.import_module(FLAGS.model_classifier) # import network module
MODEL_FILE_CLS = os.path.join(BASE_DIR, 'models', FLAGS.model_classifier+'.py')
NAME_MODEL = ''
BATCH_SIZE = FLAGS.batch_size
NUM_POINT = FLAGS.num_point
MAX_EPOCH = FLAGS.max_epoch
BASE_LEARNING_RATE = FLAGS.learning_rate
GPU_INDEX = FLAGS.gpu
MOMENTUM = FLAGS.momentum
OPTIMIZER = FLAGS.optimizer
DECAY_STEP = FLAGS.decay_step
DECAY_RATE = FLAGS.decay_rate
MODEL = importlib.import_module(FLAGS.model) # import network module
MODEL_FILE = os.path.join(BASE_DIR, 'models', FLAGS.model+'.py')
LOG_DIR = FLAGS.log_dir
if not os.path.exists(LOG_DIR): os.mkdir(LOG_DIR)
os.system('cp %s %s' % (MODEL_FILE, LOG_DIR)) # bkp of model def
os.system('cp %s %s' % (MODEL_FILE_CLS, LOG_DIR)) # bkp of model_cls def
os.system('cp train.py %s' % (LOG_DIR)) # bkp of train procedure
LOG_FOUT = open(os.path.join(LOG_DIR,FLAGS.model + NAME_MODEL + '_log_train.txt'), 'w')
LOG_FOUT.write(str(FLAGS)+'\n')
MAX_NUM_POINT = 2048
NUM_CLASSES = 40
BN_INIT_DECAY = 0.5
BN_DECAY_DECAY_RATE = 0.5
BN_DECAY_DECAY_STEP = float(DECAY_STEP)
BN_DECAY_CLIP = 0.99
HOSTNAME = socket.gethostname()
# ModelNet40 official train/test split
folder = 'data/modelnet40_ply_hdf5_2048'
TRAIN_FILES = provider.getDataFiles( \
os.path.join(BASE_DIR, folder + '/train_files.txt'))
TEST_FILES = provider.getDataFiles(\
os.path.join(BASE_DIR, folder + '/test_files.txt'))
# Feature files, which are generated after training the whole network.
# The extracted feature files are utilized to train the classifier.
path = 'data/extracted_feature'
TRAIN_FILES_CLS = provider.getDataFiles( \
os.path.join(BASE_DIR, path + '/train_files.txt'))
TEST_FILES_CLS = provider.getDataFiles(\
os.path.join(BASE_DIR, path + '/test_files.txt'))
# Print the log contents to a txt file.
def log_string(out_str):
LOG_FOUT.write(out_str+'\n')
LOG_FOUT.flush()
print(out_str)
# Decay the learning rate to avoid oscillation.
def get_learning_rate(batch):
learning_rate = tf.train.exponential_decay(
BASE_LEARNING_RATE, # Base learning rate.
batch * BATCH_SIZE, # Current index into the dataset.
DECAY_STEP, # Decay step.
DECAY_RATE, # Decay rate.
staircase=True)
learning_rate = tf.maximum(learning_rate, 0.00001) # CLIP THE LEARNING RATE!
return learning_rate
def get_bn_decay(batch):
bn_momentum = tf.train.exponential_decay(
BN_INIT_DECAY,
batch*BATCH_SIZE,
BN_DECAY_DECAY_STEP,
BN_DECAY_DECAY_RATE,
staircase=True)
bn_decay = tf.minimum(BN_DECAY_CLIP, 1 - bn_momentum)
return bn_decay
def train():
with tf.Graph().as_default():
with tf.device('/gpu:'+str(GPU_INDEX)):
pointclouds_pl, labels_pl = MODEL.placeholder_inputs(BATCH_SIZE, NUM_POINT)
is_training_pl = tf.placeholder(tf.bool, shape=())
print(is_training_pl)
# Note the global_step = batch parameter to minimize.
# That tells the optimizer to helpfully increment the 'batch'
# parameter for you every time it trains.
batch = tf.Variable(0)
bn_decay = get_bn_decay(batch)
tf.summary.scalar('bn_decay', bn_decay)
# Get model and loss
pred,layers = MODEL.get_model(pointclouds_pl, is_training_pl, bn_decay=bn_decay)
loss = MODEL.get_loss(pred, labels_pl)
tf.summary.scalar('loss', loss)
correct = tf.equal(tf.argmax(pred, 1), tf.to_int64(labels_pl))
accuracy = tf.reduce_sum(tf.cast(correct, tf.float32)) / float(BATCH_SIZE)
tf.summary.scalar('accuracy', accuracy)
# Get training optimizer
learning_rate = get_learning_rate(batch)
tf.summary.scalar('learning_rate', learning_rate)
if OPTIMIZER == 'momentum':
optimizer = tf.train.MomentumOptimizer(learning_rate, momentum=MOMENTUM)
elif OPTIMIZER == 'adam':
optimizer = tf.train.AdamOptimizer(learning_rate)
train_op = optimizer.minimize(loss, global_step=batch)
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
# Create a session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
config.log_device_placement = False
sess = tf.Session(config=config)
# Add summary writers
#merged = tf.merge_all_summaries()
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(os.path.join(
LOG_DIR, FLAGS.model + NAME_MODEL +'_train'),sess.graph)
test_writer = tf.summary.FileWriter(os.path.join(
LOG_DIR,FLAGS.model + NAME_MODEL +'_test'))
# Init variables
init = tf.global_variables_initializer()
# To fix the bug introduced in TF 0.12.1 as in
# http://stackoverflow.com/questions/41543774/invalidargumenterror-for-tensor-bool-tensorflow-0-12-1
#sess.run(init)
sess.run(init, {is_training_pl: True})
ops = {'pointclouds_pl': pointclouds_pl,
'labels_pl': labels_pl,
'is_training_pl': is_training_pl,
'pred': pred,
'loss': loss,
'train_op': train_op,
'merged': merged,
'step': batch}
# # restore paramters
# saver.restore(sess, os.path.join(LOG_DIR, FLAGS.model+
# str(NAME_MODEL)+"_model.ckpt"))
best_accuracy = 0.0
for epoch in range(MAX_EPOCH):
log_string('**** EPOCH %03d ****' % (epoch))
sys.stdout.flush()
train_one_epoch(sess, ops, train_writer)
accuracy = eval_one_epoch(sess, ops, test_writer)
# Save the network that achieves the best validation accuracy.
# There are only training set and validation set for ModelNet40.
# Previous researchers report their best accuracy rather than
# final accuracy because they also regard the testing set as
# validation set.
if accuracy > best_accuracy:
best_accuracy = accuracy
save_path = saver.save(sess, os.path.join(
LOG_DIR, FLAGS.model+ NAME_MODEL +"_model.ckpt"))
log_string("Best accuracy, model saved in file: %s" % save_path)
# Save the extracted global feature
save_global_feature(sess, ops, saver,layers)
def train_one_epoch(sess, ops, train_writer):
""" ops: dict mapping from string to tf ops """
is_training = True
# Shuffle train files
train_file_idxs = np.arange(0, len(TRAIN_FILES))
np.random.shuffle(train_file_idxs)
for fn in range(len(TRAIN_FILES)):
log_string('----' + str(fn) + '-----')
# Load data and labels from the files.
current_data, current_label = provider.loadDataFile(TRAIN_FILES[train_file_idxs[fn]])
current_data = current_data[:,0:NUM_POINT,:]
# Shuffle the data in the training set.
current_data, current_label, _ = provider.shuffle_data(current_data, np.squeeze(current_label))
current_label = np.squeeze(current_label)
file_size = current_data.shape[0]
num_batches = file_size // BATCH_SIZE
total_correct = 0
total_seen = 0
loss_sum = 0
for batch_idx in range(num_batches):
start_idx = batch_idx * BATCH_SIZE
end_idx = (batch_idx+1) * BATCH_SIZE
# Augment batched point clouds by rotating, jittering, shifting,
# and scaling.
rotated_data = provider.rotate_point_cloud(current_data[start_idx:end_idx, :, :])
jittered_data = provider.jitter_point_cloud(rotated_data)
jittered_data = provider.random_scale_point_cloud(jittered_data)
jittered_data = provider.rotate_perturbation_point_cloud(jittered_data)
jittered_data = provider.shift_point_cloud(jittered_data)
# Input the augmented point cloud and labels to the graph.
feed_dict = {ops['pointclouds_pl']: jittered_data,
ops['labels_pl']: current_label[start_idx:end_idx],
ops['is_training_pl']: is_training,}
# Calculate the loss and accuracy of the input batch data.
summary, step, _, loss_val, pred_val = sess.run([ops['merged'], ops['step'],
ops['train_op'], ops['loss'], ops['pred']], feed_dict=feed_dict)
train_writer.add_summary(summary, step)
pred_val = np.argmax(pred_val, 1)
correct = np.sum(pred_val == current_label[start_idx:end_idx])
total_correct += correct
total_seen += BATCH_SIZE
loss_sum += loss_val
log_string('mean loss: %f' % (loss_sum / float(num_batches)))
log_string('accuracy: %f' % (total_correct / float(total_seen)))
def eval_one_epoch(sess, ops, test_writer):
""" ops: dict mapping from string to tf ops """
is_training = False
total_correct = 0
total_seen = 0
loss_sum = 0
total_seen_class = [0 for _ in range(NUM_CLASSES)]
total_correct_class = [0 for _ in range(NUM_CLASSES)]
for fn in range(len(TEST_FILES)):
log_string('----' + str(fn) + '-----')
current_data, current_label = provider.loadDataFile(TEST_FILES[fn])
current_data = current_data[:,0:NUM_POINT,:]
current_label = np.squeeze(current_label)
file_size = current_data.shape[0]
num_batches = file_size // BATCH_SIZE
for batch_idx in range(num_batches):
start_idx = batch_idx * BATCH_SIZE
end_idx = (batch_idx+1) * BATCH_SIZE
# Input the point cloud and labels to the graph.
feed_dict = {ops['pointclouds_pl']: current_data[start_idx:end_idx, :, :],
ops['labels_pl']: current_label[start_idx:end_idx],
ops['is_training_pl']: is_training}
# Calculate the loss and classification scores.
summary, step, loss_val, pred_val = sess.run([ops['merged'], ops['step'],
ops['loss'], ops['pred']], feed_dict=feed_dict)
pred_val = np.argmax(pred_val, 1)
correct = np.sum(pred_val == current_label[start_idx:end_idx])
total_correct += correct
total_seen += BATCH_SIZE
loss_sum += (loss_val*BATCH_SIZE)
for i in range(start_idx, end_idx):
l = current_label[i]
total_seen_class[l] += 1
total_correct_class[l] += (pred_val[i-start_idx] == l)
log_string('eval mean loss: %f' % (loss_sum / float(total_seen)))
log_string('eval accuracy: %f'% (total_correct / float(total_seen)))
log_string('eval avg class acc: %f' % (np.mean(np.array(total_correct_class)/np.array(total_seen_class,dtype=np.float))))
return total_correct / float(total_seen)
def save_global_feature(sess, ops, saver, layers):
feature_name = 'global_feature'
file_name_vec = ['train_' + feature_name, 'test_' + feature_name]
Files_vec = [TRAIN_FILES, TEST_FILES]
#Restore variables that achieves the best validation accuracy from the disk.
saver.restore(sess, os.path.join(LOG_DIR, FLAGS.model+
str(NAME_MODEL)+ "_model.ckpt"))
log_string("Model restored.")
is_training = False
# Extract the features from training set and validation set.
for r in range(2):
file_name = file_name_vec[r]
Files = Files_vec[r]
global_feature_vec = np.array([])
label_vec = np.array([])
for fn in range(len(Files)):
log_string('----'+str(fn)+'----')
current_data, current_label = provider.loadDataFile(Files[fn])
current_data = current_data[:,0:NUM_POINT,:]
current_label = np.squeeze(current_label)
print(current_data.shape)
file_size = current_data.shape[0]
num_batches = file_size // BATCH_SIZE
print(file_size)
for batch_idx in range(num_batches):
start_idx = batch_idx * BATCH_SIZE
end_idx = (batch_idx+1) * BATCH_SIZE
# Input the point cloud and labels to the graph.
feed_dict = {ops['pointclouds_pl']: current_data[start_idx:end_idx, :, :],
ops['labels_pl']: current_label[start_idx:end_idx],
ops['is_training_pl']: is_training}
# Extract the global features from the input batch data.
global_feature = np.squeeze(layers[feature_name].eval(
feed_dict=feed_dict,session=sess))
if label_vec.shape[0] == 0:
global_feature_vec = global_feature
label_vec = current_label[start_idx:end_idx]
else:
global_feature_vec = np.concatenate([global_feature_vec, global_feature])
label_vec = np.concatenate([label_vec, current_label[start_idx:end_idx]])
# Save all global features to the disk.
FileIO.write_h5('data/extracted_feature/' + file_name + '.h5', global_feature_vec, label_vec)
def train_classifier():
with tf.Graph().as_default():
with tf.device('/gpu:'+str(GPU_INDEX)):
pointclouds_pl, labels_pl = MODEL_CLS.placeholder_inputs(
BATCH_SIZE, NUM_FEATURE_CLS)
is_training_pl = tf.placeholder(tf.bool, shape=())
# Note the global_step=batch parameter to minimize.
# That tells the optimizer to helpfully increment the 'batch' parameter for you every time it trains.
batch = tf.Variable(0)
bn_decay = get_bn_decay(batch)
tf.summary.scalar('bn_decay', bn_decay)
# Get model and loss
pred, layers = MODEL_CLS.get_model(pointclouds_pl, is_training_pl, bn_decay=bn_decay)
loss = MODEL_CLS.get_loss(pred, labels_pl)
tf.summary.scalar('loss', loss)
correct = tf.equal(tf.argmax(pred, 1), tf.to_int64(labels_pl))
accuracy = tf.reduce_sum(tf.cast(correct, tf.float32)) / float(BATCH_SIZE)
tf.summary.scalar('accuracy', accuracy)
# Get training operator
learning_rate = get_learning_rate(batch)
tf.summary.scalar('learning_rate', learning_rate)
# We change the optimier to momentum. Because the momentum can
# find better parameters
if OPTIMIZER_CLS == 'momentum':
optimizer = tf.train.MomentumOptimizer(learning_rate, momentum=MOMENTUM)
elif OPTIMIZER_CLS == 'adam':
optimizer = tf.train.AdamOptimizer(learning_rate)
elif OPTIMIZER_CLS == 'SGD':
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
train_op = optimizer.minimize(loss, global_step=batch)
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
# Create a session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
config.log_device_placement = False
sess = tf.Session(config=config)
# Add summary writers
#merged = tf.merge_all_summaries()
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'train_'+FLAGS.model+'_'+str(NAME_MODEL)),
sess.graph)
test_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'test_'+FLAGS.model+'_'+str(NAME_MODEL)),
sess.graph)
# Init variables
init = tf.global_variables_initializer()
# To fix the bug introduced in TF 0.12.1 as in
# http://stackoverflow.com/questions/41543774/invalidargumenterror-for-tensor-bool-tensorflow-0-12-1
#sess.run(init)
sess.run(init, {is_training_pl: True})
ops = {'pointclouds_pl': pointclouds_pl,
'labels_pl': labels_pl,
'is_training_pl': is_training_pl,
'pred': pred,
'loss': loss,
'train_op': train_op,
'merged': merged,
'step': batch}
# We retrain the classifier three times to see the stable accuracy.
# It takes much less time to retrain the classifier than to
# train the whole network.
idx_num = 3
best_accuracy_vec = np.zeros(idx_num)
class_accuracy_vec = np.zeros(idx_num)
save_path = ''
for idx in range(idx_num):
best_accuracy = 0.0
# Init variables
init = tf.global_variables_initializer()
# To fix the bug introduced in TF 0.12.1 as in
# http://stackoverflow.com/questions/41543774/invalidargumenterror-for-tensor-bool-tensorflow-0-12-1
#sess.run(init)
sess.run(init, {is_training_pl: True})
ops = {'pointclouds_pl': pointclouds_pl,
'labels_pl': labels_pl,
'is_training_pl': is_training_pl,
'pred': pred,
'loss': loss,
'train_op': train_op,
'merged': merged,
'step': batch}
for epoch in range(MAX_EPOCH_CLS):
log_string('**** EPOCH %03d ****' % (epoch))
sys.stdout.flush()
train_classifier_one_epoch(sess, ops, train_writer)
accuracy, class_accuracy = eval_classifier_one_epoch(sess, ops, test_writer)
# Save the variables that achieves the best accuracy to disk.
if accuracy > best_accuracy:
best_accuracy = accuracy
best_accuracy_vec[idx:] = accuracy
class_accuracy_vec[idx:] = class_accuracy
log_string('Best accuracy,: %f'% best_accuracy)
log_string('Class accuracy,: %f'% class_accuracy)
save_path = saver.save(sess, os.path.join(LOG_DIR,
FLAGS.model_classifier+str(NAME_MODEL)+"_model.ckpt"))
log_string('Max of best accuracy,: %f'% np.max(best_accuracy_vec))
print(best_accuracy_vec)
log_string('Max of class accuracy,: %f'% np.max(class_accuracy_vec))
log_string("Model saved in file: %s" % save_path)
print(class_accuracy_vec)
def train_classifier_one_epoch(sess, ops, train_writer):
""" ops: dict mapping from string to tf ops """
is_training = True
for fn in range(len(TRAIN_FILES_CLS)):
# Shuffle train files
current_data, current_label = provider.loadDataFile(TRAIN_FILES_CLS[fn])
current_data, current_label, _ = provider.shuffle_data(current_data, np.squeeze(current_label))
current_label = np.squeeze(current_label)
# I find that we can increase the accuracy by about 0.2% after
# padding zero vectors, but I do not know the reason.
current_data = np.concatenate([current_data, np.zeros((
current_data.shape[0], NUM_FEATURE_CLS - current_data.shape[1]))], axis = -1)
file_size = current_data.shape[0]
num_batches = file_size // BATCH_SIZE
total_correct = 0
total_seen = 0
loss_sum = 0
for batch_idx in range(num_batches):
start_idx = batch_idx * BATCH_SIZE
end_idx = (batch_idx+1) * BATCH_SIZE
# Input the features and labels to the graph.
feed_dict = {ops['pointclouds_pl']: current_data[start_idx:end_idx,...],
ops['labels_pl']: current_label[start_idx:end_idx],
ops['is_training_pl']: is_training,}
# Calculate the loss and classification scores.
summary, step, _, loss_val, pred_val = sess.run([ops['merged'], ops['step'],
ops['train_op'], ops['loss'], ops['pred']], feed_dict=feed_dict)
train_writer.add_summary(summary, step)
pred_val = np.argmax(pred_val, 1)
correct = np.sum(pred_val == current_label[start_idx:end_idx])
total_correct += correct
total_seen += BATCH_SIZE
loss_sum += loss_val
def eval_classifier_one_epoch(sess, ops, test_writer):
""" ops: dict mapping from string to tf ops """
is_training = False
total_correct = 0
total_seen = 0
loss_sum = 0
total_seen_class = [0 for _ in range(NUM_CLASSES)]
total_correct_class = [0 for _ in range(NUM_CLASSES)]
file_size_sum = 0
for fn in range(len(TEST_FILES_CLS)):
current_data, current_label = provider.loadDataFile(TEST_FILES_CLS[fn])
current_label = np.squeeze(current_label)
# I find that we can increase the accuracy by about 0.2% after
# padding zero vectors, but I do not know the reason.
current_data = np.concatenate([current_data, np.zeros((
current_data.shape[0], NUM_FEATURE_CLS - current_data.shape[1]))], axis = -1)
file_size = current_data.shape[0]
file_size_sum += file_size
num_batches = file_size // BATCH_SIZE
for batch_idx in range(num_batches):
start_idx = batch_idx * BATCH_SIZE
end_idx = (batch_idx+1) * BATCH_SIZE
# Input the features and labels to the graph.
feed_dict = {ops['pointclouds_pl']: current_data[start_idx:end_idx,:],
ops['labels_pl']: current_label[start_idx:end_idx],
ops['is_training_pl']: is_training}
# Calculate the loss and classification scores.
summary, step, loss_val, pred_val = sess.run([ops['merged'], ops['step'],
ops['loss'], ops['pred']], feed_dict=feed_dict)
test_writer.add_summary(summary, step)
pred_val = np.argmax(pred_val, 1)
correct = np.sum(pred_val == current_label[start_idx:end_idx])
total_correct += correct
total_seen += BATCH_SIZE
loss_sum += (loss_val*BATCH_SIZE)
for i in range(start_idx, end_idx):
l = current_label[i]
total_seen_class[l] += 1
total_correct_class[l] += (pred_val[i-start_idx] == l)
accuracy = total_correct / float(total_seen)
class_accuracy = np.mean(np.array(total_correct_class)/np.array(
total_seen_class,dtype=np.float))
return accuracy, class_accuracy
if __name__ == "__main__":
train()
train_classifier()
LOG_FOUT.close()