-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransformers_llmci.py
526 lines (466 loc) · 25.2 KB
/
transformers_llmci.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
from packaging import version
import importlib.metadata
import importlib.util
# Referring to transformers.
def _is_package_available(pkg_name: str, min_version: str):
# Check we're not importing a "pkg_name" directory somewhere but the actual library by trying to grab the version
package_exists = importlib.util.find_spec(pkg_name) is not None
if package_exists:
try:
package_version = importlib.metadata.version(pkg_name)
if version.parse(package_version) >= version.parse(min_version):
return True
except importlib.metadata.PackageNotFoundError as ex:
print(ex)
return False
else:
return False
if _is_package_available("transformers", "4.40.0"):
from transformers.generation.stopping_criteria import EosTokenCriteria
elif _is_package_available("transformers", "4.38.0"):
import torch.distributed as dist
else:
raise RuntimeError(f"Need transformers >= 4.38.0")
from transformers import AutoModelForCausalLM, AutoTokenizer # , Qwen2ForCausalLM
import torch
from torch import nn
from typing import List, Optional, Union
import time
import warnings
from transformers.generation.logits_process import (
LogitsProcessorList
)
from transformers.generation.stopping_criteria import (
StoppingCriteriaList,
validate_stopping_criteria
)
from transformers.generation.utils import (
GenerateDecoderOnlyOutput,
GenerateEncoderDecoderOutput,
GenerateNonBeamOutput
)
from transformers.generation.streamers import BaseStreamer
class TransformersLLMci:
def __init__(self, tokenizers_path, model_path, max_new_tokens):
self.device = "cuda"
self.max_new_tokens = max_new_tokens
self.tokenizer = AutoTokenizer.from_pretrained(tokenizers_path, padding_side='left')
self.model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto", torch_dtype=torch.float16)
if _is_package_available("transformers", "4.40.0"):
self.model._sample = self._sample # transformers>=4.40
elif _is_package_available("transformers", "4.38.0"):
self.model.sample = self.sample
self.add_stop_char_list = []
self.fixed_content_list = []
self.llmci_flag = []
def generate(self, datas):
# Empty llmci dict
self.add_stop_char_list = []
self.fixed_content_list = []
self.llmci_flag = []
outputs_llmci_bos = [] # this list is for tokens that add to the beginning
texts = []
for data in datas:
messages = data["messages"]
text = self.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
texts.append(text)
# Check llmci input in data
data['add_stop_char'] = data['add_stop_char'] if 'add_stop_char' in data else []
data['fixed_content'] = data['fixed_content'] if 'fixed_content' in data else []
assert isinstance(data['add_stop_char'], list) and isinstance(data['fixed_content'], list), "`add_stop_char` and `fixed_content` must in list type"
assert len(data['add_stop_char']) == len(data['fixed_content']), "len of `add_stop_char` and `fixed_content` are not equal"
# In case that add tokens at beggining
outputs_llmci_bos.append("")
if data['add_stop_char'] and data['add_stop_char'][0] == '<|llmci_bos|>':
texts[-1] += data['fixed_content'][0]
outputs_llmci_bos[-1] += data['fixed_content'][0]
data['add_stop_char'].pop(0)
data['fixed_content'].pop(0)
# Prepare llmci dict
self.add_stop_char_list.append(data["add_stop_char"])
# self.fixed_content_list.append(
# [torch.tensor(self.tokenizer.encode(str_), dtype=torch.long, device=self.device)
# for str_ in data["fixed_content"]] if data["fixed_content"] else [])
self.fixed_content = []
for str_ in data['fixed_content']:
if str_ == "<|llmci_eos|>" and self.tokenizer.eos_token is not None:
str_ = self.tokenizer.eos_token
self.fixed_content.append(torch.tensor(self.tokenizer.encode(str_), dtype=torch.long, device=self.device))
self.fixed_content_list.append(self.fixed_content)
self.llmci_flag.append(False)
model_inputs = self.tokenizer(texts, return_tensors="pt", padding=True).to(self.device)
generated_ids = self.model.generate(
model_inputs.input_ids,
max_new_tokens=self.max_new_tokens,
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
# Calculate tokens
try:
output_tokens_num = []
for g_ids in generated_ids:
special_tokens_num = 0
for id_ in g_ids:
if id_.item() == self.model.generation_config.pad_token_id:
special_tokens_num += 1
output_tokens_num.append(g_ids.shape[0] - special_tokens_num)
except Exception as ex:
print(ex)
output_tokens_num = [0 for _ in range(len(generated_ids))]
output_texts = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
output_texts = [output_llmci_bos + output_text for output_llmci_bos, output_text in zip(outputs_llmci_bos, output_texts)]
return output_texts, output_tokens_num
def _sample(
self,
input_ids: torch.LongTensor,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
logits_warper: Optional[LogitsProcessorList] = None,
max_length: Optional[int] = None,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[Union[int, List[int]]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_scores: Optional[bool] = None,
output_logits: Optional[bool] = None,
return_dict_in_generate: Optional[bool] = None,
synced_gpus: bool = False,
streamer: Optional["BaseStreamer"] = None,
**model_kwargs,
) -> Union[GenerateNonBeamOutput, torch.LongTensor]:
# init values
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
if max_length is not None:
warnings.warn(
"`max_length` is deprecated in this function, use"
" `stopping_criteria=StoppingCriteriaList([MaxLengthCriteria(max_length=max_length)])` instead.",
UserWarning,
)
stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
logits_warper = logits_warper if logits_warper is not None else LogitsProcessorList()
pad_token_id = pad_token_id if pad_token_id is not None else self.model.generation_config.pad_token_id
# eos_token_id = eos_token_id if eos_token_id is not None else self.model.generation_config.eos_token_id
if eos_token_id is not None:
print(
"`eos_token_id` is deprecated in this function and will be removed in v4.41, use",
" `stopping_criteria=StoppingCriteriaList([EosTokenCriteria(eos_token_id=eos_token_id)])` instead.",
" Otherwise make sure to set `model.generation_config.eos_token_id`"
)
stopping_criteria.append(EosTokenCriteria(eos_token_id=eos_token_id))
else:
# TODO remove when the method is totally private
# need to get `eos_token_id` and add stopping criteria, so that generation does not go forever
eos_token_id = [
criteria.eos_token_id.tolist() for criteria in stopping_criteria if hasattr(criteria, "eos_token_id")
]
eos_token_id = eos_token_id[0] if eos_token_id else None
if eos_token_id is None and self.model.generation_config.eos_token_id is not None:
eos_token_id = self.model.generation_config.eos_token_id
stopping_criteria.append(EosTokenCriteria(eos_token_id=eos_token_id))
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
output_scores = output_scores if output_scores is not None else self.model.generation_config.output_scores
output_logits = output_logits if output_logits is not None else self.model.generation_config.output_logits
output_attentions = (
output_attentions if output_attentions is not None else self.model.generation_config.output_attentions
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.model.generation_config.output_hidden_states
)
return_dict_in_generate = (
return_dict_in_generate
if return_dict_in_generate is not None
else self.model.generation_config.return_dict_in_generate
)
# init attention / hidden states / scores tuples
scores = () if (return_dict_in_generate and output_scores) else None
raw_logits = () if (return_dict_in_generate and output_logits) else None
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
cross_attentions = () if (return_dict_in_generate and output_attentions) else None
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
# if model is an encoder-decoder, retrieve encoder attention weights and hidden states
if return_dict_in_generate and self.model.config.is_encoder_decoder:
encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
encoder_hidden_states = (
model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
)
# keep track of which sequences are already finished
batch_size, cur_len = input_ids.shape
if "inputs_embeds" in model_kwargs:
cur_len = model_kwargs["inputs_embeds"].shape[1]
this_peer_finished = False
unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
model_kwargs["cache_position"] = torch.arange(cur_len, device=input_ids.device)
while self.model._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
# prepare model inputs
model_inputs = self.model.prepare_inputs_for_generation(input_ids, **model_kwargs)
# forward pass to get next token
outputs = self.model(
**model_inputs,
return_dict=True,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
if synced_gpus and this_peer_finished:
continue # don't waste resources running the code we don't need
next_token_logits = outputs.logits[:, -1, :]
# pre-process distribution
next_token_scores = logits_processor(input_ids, next_token_logits)
next_token_scores = logits_warper(input_ids, next_token_scores)
# Store scores, attentions and hidden_states when required
if return_dict_in_generate:
if output_scores:
scores += (next_token_scores,)
if output_logits:
raw_logits += (next_token_logits,)
if output_attentions:
decoder_attentions += (
(outputs.decoder_attentions,) if self.model.config.is_encoder_decoder else (outputs.attentions,)
)
if self.model.config.is_encoder_decoder:
cross_attentions += (outputs.cross_attentions,)
if output_hidden_states:
decoder_hidden_states += (
(outputs.decoder_hidden_states,)
if self.model.config.is_encoder_decoder
else (outputs.hidden_states,)
)
# sample
probs = nn.functional.softmax(next_token_scores, dim=-1)
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
# finished sentences should have their next token be a padding token
if eos_token_id is not None:
if pad_token_id is None:
raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
# llmci replacement
for idx, fixed_content in enumerate(self.fixed_content_list):
if self.llmci_flag[idx]:
next_tokens[idx] = fixed_content[0][0]
self.fixed_content_list[idx][0] = fixed_content[0][1:]
if not self.fixed_content_list[idx][0].shape[0]:
self.fixed_content_list[idx].pop(0)
self.add_stop_char_list[idx].pop(0)
self.llmci_flag[idx] = False
# llmci judge: if encounter stop character
batch_new_str = self.tokenizer.batch_decode([next_tokens], skip_special_tokens=True)
for idx, new_str in enumerate(batch_new_str):
if self.add_stop_char_list[idx] and self.add_stop_char_list[idx][0] in new_str:
self.llmci_flag[idx] = True
# update generated ids, model inputs, and length for next step
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
if streamer is not None:
streamer.put(next_tokens.cpu())
model_kwargs = self.model._update_model_kwargs_for_generation(
outputs,
model_kwargs,
is_encoder_decoder=self.model.config.is_encoder_decoder,
)
unfinished_sequences = unfinished_sequences & ~stopping_criteria(input_ids, scores)
this_peer_finished = unfinished_sequences.max() == 0
if streamer is not None:
streamer.end()
if return_dict_in_generate:
if self.model.config.is_encoder_decoder:
return GenerateEncoderDecoderOutput(
sequences=input_ids,
scores=scores,
logits=raw_logits,
encoder_attentions=encoder_attentions,
encoder_hidden_states=encoder_hidden_states,
decoder_attentions=decoder_attentions,
cross_attentions=cross_attentions,
decoder_hidden_states=decoder_hidden_states,
past_key_values=model_kwargs.get("past_key_values"),
)
else:
return GenerateDecoderOnlyOutput(
sequences=input_ids,
scores=scores,
logits=raw_logits,
attentions=decoder_attentions,
hidden_states=decoder_hidden_states,
past_key_values=model_kwargs.get("past_key_values"),
)
else:
return input_ids
def sample(
self,
input_ids: torch.LongTensor,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
logits_warper: Optional[LogitsProcessorList] = None,
max_length: Optional[int] = None,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[Union[int, List[int]]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_scores: Optional[bool] = None,
output_logits: Optional[bool] = None,
return_dict_in_generate: Optional[bool] = None,
synced_gpus: bool = False,
streamer: Optional["BaseStreamer"] = None,
**model_kwargs,
) -> Union[GenerateNonBeamOutput, torch.LongTensor]:
# init values
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
if max_length is not None:
warnings.warn(
"`max_length` is deprecated in this function, use"
" `stopping_criteria=StoppingCriteriaList([MaxLengthCriteria(max_length=max_length)])` instead.",
UserWarning,
)
stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
logits_warper = logits_warper if logits_warper is not None else LogitsProcessorList()
pad_token_id = pad_token_id if pad_token_id is not None else self.model.generation_config.pad_token_id
eos_token_id = eos_token_id if eos_token_id is not None else self.model.generation_config.eos_token_id
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
output_scores = output_scores if output_scores is not None else self.model.generation_config.output_scores
output_logits = output_logits if output_logits is not None else self.model.generation_config.output_logits
output_attentions = (
output_attentions if output_attentions is not None else self.model.generation_config.output_attentions
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.model.generation_config.output_hidden_states
)
return_dict_in_generate = (
return_dict_in_generate
if return_dict_in_generate is not None
else self.model.generation_config.return_dict_in_generate
)
# init attention / hidden states / scores tuples
scores = () if (return_dict_in_generate and output_scores) else None
raw_logits = () if (return_dict_in_generate and output_logits) else None
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
cross_attentions = () if (return_dict_in_generate and output_attentions) else None
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
# if model is an encoder-decoder, retrieve encoder attention weights and hidden states
if return_dict_in_generate and self.model.config.is_encoder_decoder:
encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
encoder_hidden_states = (
model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
)
# keep track of which sequences are already finished
unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
this_peer_finished = False # used by synced_gpus only
# auto-regressive generation
while True:
if synced_gpus:
# Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
# The following logic allows an early break if all peers finished generating their sequence
this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
# send 0.0 if we finished, 1.0 otherwise
dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
# did all peers finish? the reduced sum will be 0.0 then
if this_peer_finished_flag.item() == 0.0:
break
# prepare model inputs
model_inputs = self.model.prepare_inputs_for_generation(input_ids, **model_kwargs)
# forward pass to get next token
outputs = self.model(
**model_inputs,
return_dict=True,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
if synced_gpus and this_peer_finished:
continue # don't waste resources running the code we don't need
next_token_logits = outputs.logits[:, -1, :]
# pre-process distribution
next_token_scores = logits_processor(input_ids, next_token_logits)
next_token_scores = logits_warper(input_ids, next_token_scores)
# Store scores, attentions and hidden_states when required
if return_dict_in_generate:
if output_scores:
scores += (next_token_scores,)
if output_logits:
raw_logits += (next_token_logits,)
if output_attentions:
decoder_attentions += (
(outputs.decoder_attentions,) if self.model.config.is_encoder_decoder else (outputs.attentions,)
)
if self.model.config.is_encoder_decoder:
cross_attentions += (outputs.cross_attentions,)
if output_hidden_states:
decoder_hidden_states += (
(outputs.decoder_hidden_states,)
if self.model.config.is_encoder_decoder
else (outputs.hidden_states,)
)
# sample
probs = nn.functional.softmax(next_token_scores, dim=-1)
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
# finished sentences should have their next token be a padding token
if eos_token_id is not None:
if pad_token_id is None:
raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
# llmci replacement
for idx, fixed_content in enumerate(self.fixed_content_list):
if self.llmci_flag[idx]:
next_tokens[idx] = fixed_content[0][0]
self.fixed_content_list[idx][0] = fixed_content[0][1:]
if not self.fixed_content_list[idx][0].shape[0]:
self.fixed_content_list[idx].pop(0)
self.add_stop_char_list[idx].pop(0)
self.llmci_flag[idx] = False
# llmci judge: if encounter stop character
batch_new_str = self.tokenizer.batch_decode([next_tokens], skip_special_tokens=True)
for idx, new_str in enumerate(batch_new_str):
if self.add_stop_char_list[idx] and self.add_stop_char_list[idx][0] in new_str:
self.llmci_flag[idx] = True
# update generated ids, model inputs, and length for next step
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
if streamer is not None:
streamer.put(next_tokens.cpu())
model_kwargs = self.model._update_model_kwargs_for_generation(
outputs, model_kwargs, is_encoder_decoder=self.model.config.is_encoder_decoder
)
# if eos_token was found in one sentence, set sentence to finished
if eos_token_id_tensor is not None:
unfinished_sequences = unfinished_sequences.mul(
next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
)
# stop when each sentence is finished
if unfinished_sequences.max() == 0:
this_peer_finished = True
# stop if we exceed the maximum length
if stopping_criteria(input_ids, scores):
this_peer_finished = True
if this_peer_finished and not synced_gpus:
break
if streamer is not None:
streamer.end()
if return_dict_in_generate:
if self.model.config.is_encoder_decoder:
return GenerateEncoderDecoderOutput(
sequences=input_ids,
scores=scores,
logits=raw_logits,
encoder_attentions=encoder_attentions,
encoder_hidden_states=encoder_hidden_states,
decoder_attentions=decoder_attentions,
cross_attentions=cross_attentions,
decoder_hidden_states=decoder_hidden_states,
past_key_values=model_kwargs.get("past_key_values"),
)
else:
return GenerateDecoderOnlyOutput(
sequences=input_ids,
scores=scores,
logits=raw_logits,
attentions=decoder_attentions,
hidden_states=decoder_hidden_states,
past_key_values=model_kwargs.get("past_key_values"),
)
else:
return input_ids