-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhandwave_detector.py
267 lines (197 loc) · 9.51 KB
/
handwave_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import utils.OAK_D_api as oak
import cv2
import torch
import numpy as np
import time
import threading
from utils.yolo_inference import yolo_inference
from models.common import DetectMultiBackend
from sort import Sort
from utils.feature_engineering import calculate_features
from ultralytics.utils.plotting import Annotator, colors
from joblib import load
class HandWaveClassifier():
def __init__(self, height, width, fps, yolo_path, classifier_path, wave_length=40):
self.height = height
self.width = width
self.fps = fps
self.yolo_path = yolo_path
self.classifier_path = classifier_path
self._camera_setup()
self._load_yolo()
self._init_tracker()
self._load_classifier()
self.ids_list = [] # List to keep track of unique IDs
self.tracks = {} # keeping x_c and y_c for each id
self.wave_length = wave_length # should be same as in the training of the classifier
# Read the overlay video
self.overlay_video_path = 'videos/anime-waves.mp4'
self.overlay_video = cv2.VideoCapture(self.overlay_video_path)
self.overlay_duration = 0.7 # Duration of the overlay video in seconds
self.should_overlay = False # Flag to check if overlay should be displayed
self.start_time = None # Start time of the overlay video
def run(self):
# wave = 1 # 0 if no wave, 1 if wave detected
cum_waves = 0 # counter for the number of waves
# Your existing code to detect waves and annotate the frame
frame, cum_waves = self._detect_waves_and_annotate()
if cum_waves > 0:
self.should_overlay = True
self.start_time = time.time()
if self.should_overlay and time.time() - self.start_time > self.overlay_duration:
self.should_overlay = False
# Overlay video if wave is detected
if self.should_overlay:
frame = self._overlay_video(frame)
return frame, cum_waves
def _overlay_video(self, frame):
# Get the dimensions of the video
overlay_width = int(self.overlay_video.get(cv2.CAP_PROP_FRAME_WIDTH))
overlay_height = int(self.overlay_video.get(cv2.CAP_PROP_FRAME_HEIGHT))
# Calculate new dimensions based on the desired scale
new_width = int(overlay_width * 0.4)
new_height = int(overlay_height * 0.4)
# Define the position for overlay (top right corner)
frame_height, frame_width, _ = frame.shape
x_offset = frame_width - new_width
y_offset = 0
# Loop through the overlay video frames
ret, overlay_frame = self.overlay_video.read()
if not ret:
# If end of video is reached, rewind to beginning
self.overlay_video.release()
self.overlay_video = cv2.VideoCapture(self.overlay_video_path)
ret, overlay_frame = self.overlay_video.read()
if ret:
# Resize the overlay frame based on the new dimensions
overlay_frame = cv2.resize(overlay_frame, (new_width, new_height))
# Overlay the frame onto the main frame
frame[:new_height, x_offset:] = overlay_frame
return frame
'''Returns annotated image with bounding boxes and labels and the number of waves detected in the frame'''
def _detect_waves_and_annotate(self):
wave = 0 # 0 if no wave, 1 if wave detected
cum_waves = 0 # counter for the number of waves
# take frame from camera
frame, camera_fps = self.oak_d.get_color_frame(show_fps=False)
# Object detection
img, bbox_coord_conf_cls = yolo_inference(frame=frame, classes=[0,1], model=self.yolo, device=self.device)
annotator = Annotator(img, line_width=3, example=str(self.yolo.names))
# Update tracker
if len(bbox_coord_conf_cls) > 0: # If there are detections
track_bbs_ids = self.tracker.update(bbox_coord_conf_cls)
else: # If no detections update with empty list
track_bbs_ids = self.tracker.update(np.empty((0, 5)))
names = [self.yolo.names[int(cls)] for x1, y1, x2, y2, conf, cls in bbox_coord_conf_cls]
confs = [conf for x1, y1, x2, y2, conf, cls in bbox_coord_conf_cls]
# Draw frame rate on the frame
cv2.putText(img, f'{camera_fps:.2f} fps', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (220, 0, 120), 2, cv2.LINE_AA)
# Draw bounding boxes and labels for the tracked objects
for i, bb_id in enumerate(track_bbs_ids):
coords = bb_id[:4]
x1, y1, x2, y2 = [int(i) for i in coords]
# Get ID of the object
if bb_id[8] not in self.ids_list:
self.ids_list.append(bb_id[8]) # Add new ID to the list if not already present
name_idx = self.ids_list.index(bb_id[8]) # Get the index of the ID in the list
# Create label with class, confidence and ID
label = names[i] + f' {confs[i]:.2f} ' + 'ID:{}'.format(str(name_idx))
clr = int(bb_id[4])
# add tracking point to dictionary
self._add_point(name_idx, int((x1 + x2) / 2), int((y1 + y2) / 2))
# only run the classificator if the object is a palm
if names[i] == 'palm':
# run the classificator
wave = self._run_classificator(name_idx)
cum_waves += wave
if wave:
clr = 7 # green
annotator.box_label([x1, y1, x2, y2], label, color=colors(clr, True))
# show text of the number of waves detected
cv2.putText(img, f'Waves detected: {cum_waves}', (10, 70), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, cv2.LINE_AA)
return img, cum_waves
def _add_point(self, id, xc, yc):
if id not in self.tracks:
self.tracks[id] = {'xc': [], 'yc': []}
self.tracks[id]['xc'].append(xc)
self.tracks[id]['yc'].append(yc)
def _run_classificator(self, id):
# check whether we have datapoints for this id
if id in self.tracks and len(self.tracks[id]['xc']) > self.wave_length:
# get the last length points
x_signal = self.tracks[id]['xc'][-self.wave_length:]
y_signal = self.tracks[id]['yc'][-self.wave_length:]
features = calculate_features(x_signal, y_signal, sampling_rate=30, width=1920, height=1080)
x = np.array(list(features.values())).reshape(1, -1)
# run the classifier
return self.classifier.predict(x)[0]
else:
return 0
def _camera_setup(self):
self.oak_d = oak.OAK_D(fps=self.fps, width=self.width, height=self.height)
def _load_yolo(self):
# Loading pretrained model
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.yolo = DetectMultiBackend(self.yolo_path, device=self.device, dnn=False, fp16=False)
self.yolo.eval()
def _init_tracker(self):
# Initialize SORT tracker
self.tracker = Sort(min_hits=5, max_age=20)
def _load_classifier(self):
# Loading pretrained classifier
self.classifier = load(self.classifier_path)
def play_video(video_path, width, height):
# Open the video file
cap = cv2.VideoCapture(video_path)
# Check if the video file is opened successfully
if not cap.isOpened():
print("Error: Could not open video file.")
return
# Read and display frames until the end of the video
while cap.isOpened():
ret, frame = cap.read()
# Check if frame is successfully read
if not ret:
break
# resize the frame
frame = cv2.resize(frame, (width, height))
# show text
cv2.putText(frame, "Please be patient while model loads...", (50, 100), cv2.FONT_HERSHEY_SIMPLEX, 3, (104, 188, 222), 4, cv2.LINE_AA)
cv2.putText(frame, "You can't depend on your eyes when your imagination", (1000, 950), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2, cv2.LINE_AA)
cv2.putText(frame, "is out of focus", (1000, 1000), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2, cv2.LINE_AA)
# Display the frame
cv2.imshow('Loading model', frame)
cv2.waitKey(50)
# Release the video capture object and close all windows
cap.release()
cv2.destroyAllWindows()
class DetectThread(threading.Thread):
def __init__(self):
threading.Thread.__init__(self)
self.detector = None
self.event = threading.Event()
def run(self):
self.detector = HandWaveClassifier(height=height, width=width, fps=30,
yolo_path='./runs/train/yolov5s_results3/weights/best.pt',
classifier_path='models/classifier/wave_classifier.pkl')
self.event.set()
def get_detector(self):
self.event.wait()
return self.detector
if __name__ == '__main__':
width, height = 1920, 1080
initial_video_path = 'videos/rivian.mp4'
# Initialize the detector in a separate thread to load the model
init_thread = DetectThread()
init_thread.start()
# Play the video while the model is being loaded
play_video(initial_video_path, width, height)
detector = init_thread.get_detector()
while True:
# print("Running detector")
frame, wave = detector.run()
cv2.imshow("WaveDetector", frame)
# Break the loop if 'q' key is pressed
if cv2.waitKey(1) & 0xFF == ord('q'):
cv2.destroyAllWindows()
break