-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvit_model.py
102 lines (71 loc) · 3.89 KB
/
vit_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import torch
import torch.nn as nn
import numpy as np
from transformer_encoder import TransformerEncoder
class ViT(nn.Module):
def __init__(self, image_size, patch_size, num_classes, channels, encoder_blocks, n_heads,token_dim, mlp_dim, pos_encoding_learnable):
super(ViT, self).__init__()
# Currently only supports square images
assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.'
num_patches = (image_size // patch_size) ** 2
patch_dim = channels * patch_size ** 2
assert num_patches * patch_dim == channels * image_size ** 2, 'Patches must tile the image exactly.'
self.patch_size = patch_size
# Linear projection of the flattened patches (learnable)
self.linear_projection = nn.Linear(patch_dim, token_dim)
# Token for the class (learnable)
self.class_token = nn.Parameter(torch.randn(1, token_dim))
# Positional embedding can be learned or fixed (+1 for the class token)
self.pos_embedding = self._get_pos_embedding(num_patches, token_dim, pos_encoding_learnable)
# Transformer Encoder (we can have multiple encoders)
self.transformers = nn.ModuleList([TransformerEncoder(token_dim, n_heads, mlp_dim) for _ in range(encoder_blocks)])
self.mlp_head = nn.Sequential(
nn.Linear(token_dim, num_classes),
)
def forward(self, image):
patches = self._make_patches(image)
tokens = self.linear_projection(patches)
batch_size = tokens.size(0)
# append class token to the beginning of the sequence for each image in the batch
# tokens = torch.stack([torch.vstack([self.class_token, tokens[i]]) for i in range(batch_size)])
# add positional embedding to the patches (only repeats batch_size times, other dimensions are broadcasted automatically)
pos_embedding = self.pos_embedding.repeat(batch_size, 1, 1)
tokens += pos_embedding
# Pass through Transformer Encoder (we can have multiple encoders)
for transformer in self.transformers:
tokens = transformer(tokens)
# Taking only the classification token
input = tokens[:, 0]
# Running through the classification network
out = self.mlp_head(input)
return out
def _make_patches(self, image):
# input is a tensor of shape (B, C, H, W)
# B = batch size, C = n_channels, H = height, W = width
p = self.patch_size
# makes patches of shape along height (B, C, H, W) -> (B, C, H/p, W, p)
x = image.unfold(2, p, p)
# makes patches of shape along width (B, C, H/p, W, p) -> (B, C, H/p, W/p, p, p)
x = x.unfold(3, p, p)
# makes patches of shape (B, C, H/p, W/p, p, p) -> (B, C, H/p * W/p, p * p)
x = x.contiguous().view(x.size(0), x.size(1), -1, p * p)
# flattens channels (B, C, H/p * W/p, p * p) -> (B, H/p * W/p, C * p * p)
x = x.contiguous().view(x.size(0), x.size(2), -1)
return x
def _get_pos_embedding(self, n_tokens, dim, learnable):
if learnable:
# uses learnable positional embeddings
return nn.Parameter(torch.randn(n_tokens, dim))
else:
# uses fixed positional embeddings
return nn.Parameter(self._fixed_positional_embedding(n_tokens, dim).clone().detach(), requires_grad=False)
# positional embedding proposed in the 'Attention is All You Need' paper
def _fixed_positional_embedding(self, n_tokens, dim):
result = torch.zeros(n_tokens, dim)
for i in range(n_tokens):
for j in range(dim):
if j % 2 == 0:
result[i , j] = np.sin(i / 10000 ** (j / dim))
else:
result[i, j] = np.cos(i / 10000 ** ((j - 1) / dim))
return result