-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcos_similarity.py
119 lines (87 loc) · 4.42 KB
/
cos_similarity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import torch
from vit_model import ViT
import matplotlib.pyplot as plt
import seaborn as sns
import argparse
from utils import read_config
def plot_pos_embedding(pos_emb, num_patches):
# Calculate the cosine similarity between each pair of patch positions
cosine_sim = torch.nn.functional.cosine_similarity(pos_emb.unsqueeze(1), pos_emb.unsqueeze(0), dim=-1)
# Plotting the grid of cosine similarity matrices
fig, axes = plt.subplots(num_patches, num_patches, figsize=(10, 10))
for i in range(num_patches):
for j in range(num_patches):
ax = axes[i, j]
patch_index = i * num_patches + j
# Plot the heatmap
sns.heatmap(cosine_sim[patch_index].reshape(num_patches, num_patches).detach().numpy(),
annot=False, cmap='viridis', cbar=False, square=True, ax=ax)
# Remove ticks and labels from all plots
ax.set_xticks([])
ax.set_yticks([])
# Only add labels to the leftmost column and bottom row
if j == 0:
ax.set_ylabel(f'{i + 1}', fontsize=12, rotation=0, labelpad=15)
if i == num_patches - 1:
ax.set_xlabel(f'{j + 1}', fontsize=12)
# Add a single colorbar to the right of the last column
cbar_ax = fig.add_axes([0.92, 0.15, 0.02, 0.7]) # Position: [left, bottom, width, height]
# Create heatmap for colorbar
sns.heatmap(cosine_sim[0].reshape(num_patches, num_patches).detach().numpy(), cmap='viridis', cbar=True, ax=axes[0, 0], cbar_ax=cbar_ax, annot=False, square=True)
# Add title to the right of the colorbar
fig.text(0.98, 0.5, 'Kosinusna sličnost', rotation=270, va='center', ha='center', fontsize=17)
# Specifically clear ticks and labels from the first patch
axes[0, 0].set_xticks([])
axes[0, 0].set_yticks([])
axes[0, 0].tick_params(axis='both', which='both', length=0)
axes[0, 0].set_xlabel('')
axes[0, 0].set_ylabel('1', fontsize=12, rotation=0, labelpad=15)
# Set overall title and labels
fig.suptitle('Pozicioni vektori koji se uče', fontsize=19)
fig.text(0.5, 0.05, 'x-koordinata patch-a', ha='center', va='center', fontsize=14)
fig.text(0.05, 0.5, 'y-koordinata patch-a', ha='center', va='center', rotation='vertical', fontsize=14)
plt.subplots_adjust(top=0.93, right=0.9, wspace=0.1, hspace=0.1)
plt.show()
class SimilarityPlot():
def __init__(self, config_file='hyper_params.json', pretrained_model=False):
# read hyperparameters from config file
config = read_config(config_file)
self.set_config(config)
self.set_model(pretrained_model)
# Generate the positional embeddings
self.pos_emb = self.model.pos_embedding
# # Generate the positional embeddings
# pos_emb = model.pos_embedding
def set_config(self, config):
self.patch_size = config['patch_size']
self.pos_encoding_learnable=config['pos_encoding_learnable']
self.token_dim=config['token_dim']
self.n_heads=config['n_heads']
self.encoder_blocks=config['encoder_blocks']
self.mlp_dim=config['mlp_dim']
self.batch_size =config['batch_size']
self.n_epochs =config['n_epochs']
self.lr=config['lr']
self.best_path = config['best_path']
# Constants
self.image_size = 28
self.channels = 1
self.num_classes = 10
self.num_patches = (self.image_size // self.patch_size) # Example: 4x4 grid of patches
def set_model(self, pretrained_model):
self.model = ViT(image_size=self.image_size, patch_size=self.patch_size,
num_classes=self.num_classes, channels=self.channels,
pos_encoding_learnable=self.pos_encoding_learnable,
token_dim=self.token_dim, mlp_dim=self.mlp_dim,
encoder_blocks=self.encoder_blocks, n_heads=self.n_heads)
if pretrained_model:
self.model.load_state_dict(torch.load(self.best_path))
if __name__ == '__main__':
# Create the argument parser
parser = argparse.ArgumentParser(description='Plotting cos similarity.')
parser.add_argument('--pretrained', action='store_true', default=False,
help='Flag to use a pretrained model (default is False)')
# Parse arguments
args = parser.parse_args()
sim = SimilarityPlot(pretrained_model=args.pretrained)
plot_pos_embedding(sim.pos_emb, sim.num_patches)