-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathexport_onnx.py
83 lines (70 loc) · 3.17 KB
/
export_onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import argparse
from loftr import LoFTR, default_cfg
import torch
import torch.nn.utils.prune as prune
import onnx
from utils import make_student_config
def main():
parser = argparse.ArgumentParser(description='LoFTR demo.')
parser.add_argument('--out_file', type=str, default='weights/LoFTR_teacher.onnx',
help='Path for the output ONNX model.')
parser.add_argument('--weights', type=str, default='weights/LoFTR_teacher.pt', # weights/outdoor_ds.ckpt
help='Path to network weights.')
parser.add_argument('--original', action='store_true',
help='If specified the original LoFTR model will be used.')
parser.add_argument('--device', type=str, default='cuda',
help='cpu or cuda')
parser.add_argument('--prune', default=False, help='Do unstructured pruning')
opt = parser.parse_args()
print(opt)
device = torch.device(opt.device)
if opt.original:
model_cfg = default_cfg
else:
model_cfg = make_student_config(default_cfg)
print('Loading pre-trained network...')
model = LoFTR(config=model_cfg)
checkpoint = torch.load(opt.weights)
if checkpoint is not None:
if 'state_dict' in checkpoint:
state_dict = checkpoint['state_dict']
else:
state_dict = checkpoint['model_state_dict']
missed_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
if len(missed_keys) > 0:
print('Checkpoint is broken')
return 1
print('Successfully loaded pre-trained weights.')
else:
print('Failed to load checkpoint')
return 1
if opt.prune:
print('Model pruning')
for name, module in model.named_modules():
# prune connections in all 2D-conv layers
if isinstance(module, torch.nn.Conv2d):
prune.l1_unstructured(module, name='weight', amount=0.5)
prune.remove(module, 'weight')
# prune connections in all linear layers
elif isinstance(module, torch.nn.Linear):
prune.l1_unstructured(module, name='weight', amount=0.5)
prune.remove(module, 'weight')
weight_total_sum = 0
weight_total_num = 0
for name, module in model.named_modules():
# prune connections in all 2D-conv layers
if isinstance(module, torch.nn.Conv2d):
weight_total_sum += torch.sum(module.weight == 0)
# prune connections in all linear layers
elif isinstance(module, torch.nn.Linear):
weight_total_num += module.weight.nelement()
print(f'Global sparsity: {100. * weight_total_sum / weight_total_num:.2f}')
print(f'Moving model to device: {device}')
model = model.eval().to(device=device)
with torch.no_grad():
dummy_image = torch.randn(1, 1, default_cfg['input_height'], default_cfg['input_width'], device=device)
torch.onnx.export(model, (dummy_image, dummy_image), opt.out_file, verbose=True, opset_version=11)
model = onnx.load(opt.out_file)
onnx.checker.check_model(model)
if __name__ == "__main__":
main()