forked from google/deepvariant
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_deepvariant.py
722 lines (650 loc) · 23.6 KB
/
run_deepvariant.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
# Copyright 2020 Google LLC.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from this
# software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
"""Runs all 3 steps to go from input DNA reads to output VCF/gVCF files.
This script currently provides the most common use cases and standard models.
If you want to access more flags that are available in `make_examples`,
`call_variants`, and `postprocess_variants`, you can also call them separately
using the binaries in the Docker image.
For more details, see:
https://github.com/google/deepvariant/blob/r1.6.1/docs/deepvariant-quick-start.md
"""
import os
import subprocess
import sys
import tempfile
from typing import Any, Dict, Optional, Tuple
from absl import app
from absl import flags
from absl import logging
import tensorflow as tf
FLAGS = flags.FLAGS
# Required flags.
_MODEL_TYPE = flags.DEFINE_enum(
'model_type',
None,
['WGS', 'WES', 'PACBIO', 'ONT_R104', 'HYBRID_PACBIO_ILLUMINA'],
(
'Required. Type of model to use for variant calling. Set this flag to'
' use the default model associated with each type, and it will set'
' necessary flags corresponding to each model. If you want to use a'
' customized model, add --customized_model flag in addition to this'
' flag.'
),
)
_REF = flags.DEFINE_string(
'ref',
None,
(
'Required. Genome reference to use. Must have an associated FAI index'
' as well. Supports text or gzipped references. Should match the'
' reference used to align the BAM file provided to --reads.'
),
)
_READS = flags.DEFINE_string(
'reads',
None,
(
'Required. Aligned, sorted, indexed BAM file containing the reads we'
' want to call. Should be aligned to a reference genome compatible with'
' --ref.'
),
)
_OUTPUT_VCF = flags.DEFINE_string(
'output_vcf', None, 'Required. Path where we should write VCF file.'
)
# Optional flags.
_HAPLOID_CONTIGS = flags.DEFINE_string(
'haploid_contigs',
None,
(
'Optional list of non autosomal chromosomes. For all listed'
' chromosomes, HET probabilities are not considered. For samples with'
' XY karyotype it is expected to set --haploid_contigs="chrX,chrY" for'
' GRCh38 and --haploid_contigs="X,Y" for GRCh37. For samples with'
' XX karyotype --haploid_contigs flag should not be used.'
),
)
_PAR_REGIONS = flags.DEFINE_string(
'par_regions_bed',
None,
(
'Optional BED file containing Human Pseudoautosomal Region (PAR)'
' regions. This should be specific to the reference used. For example'
' GRCh38 PAR bed file would be different from GRCh37 bed file. Regions'
' in this bed file are treated as diploid, effectively subtracting them'
' from the --haploid_contigs.'
),
)
_DRY_RUN = flags.DEFINE_boolean(
'dry_run',
False,
'Optional. If True, only prints out commands without executing them.',
)
_INTERMEDIATE_RESULTS_DIR = flags.DEFINE_string(
'intermediate_results_dir',
None,
(
'Optional. If specified, this should be an existing '
'directory that is visible insider docker, and will be '
'used to to store intermediate outputs.'
),
)
_LOGGING_DIR = flags.DEFINE_string(
'logging_dir',
None,
(
'Optional. Directory where we should write log files '
'for each stage and optionally runtime reports.'
),
)
_RUNTIME_REPORT = flags.DEFINE_boolean(
'runtime_report',
False,
(
'Output make_examples runtime metrics '
'and create a visual runtime report using runtime_by_region_vis. '
'Only works with --logging_dir.'
),
)
_VERSION = flags.DEFINE_boolean(
'version',
None,
'Optional. If true, print out version number and exit.',
allow_hide_cpp=True,
)
# TODO: Change to True as default before release.
_USE_SLIM_MODEL = flags.DEFINE_boolean(
'use_slim_model',
False,
'Default to False. If True, the model provided has to be a Slim model.',
)
# Optional flags for call_variants.
_CUSTOMIZED_MODEL = flags.DEFINE_string(
'customized_model',
None,
(
'Optional. A path to a model checkpoint to load for the `call_variants`'
' step. If not set, the default for each --model_type will be used'
),
)
# Optional flags for make_examples.
_NUM_SHARDS = flags.DEFINE_integer(
'num_shards', 1, 'Optional. Number of shards for make_examples step.'
)
_REGIONS = flags.DEFINE_string(
'regions',
None,
(
'Optional. Space-separated list of regions we want to process. Elements'
' can be region literals (e.g., chr20:10-20) or paths to BED/BEDPE'
' files.'
),
)
_SAMPLE_NAME = flags.DEFINE_string(
'sample_name',
None,
(
'Sample name to use instead of the sample name from the input reads BAM'
' (SM tag in the header). This flag is used for both make_examples and'
' postprocess_variants.'
),
)
_USE_HP_INFORMATION = flags.DEFINE_boolean(
'use_hp_information',
None,
(
'(Deprecated in v1.4.0) Optional. If True, corresponding flags will be'
' set to properly use the HP information present in the BAM input.'
),
)
_MAKE_EXAMPLES_EXTRA_ARGS = flags.DEFINE_string(
'make_examples_extra_args',
None,
(
'A comma-separated list of flag_name=flag_value. "flag_name" has to be'
' valid flags for make_examples.py. If the flag_value is boolean, it'
' has to be flag_name=true or flag_name=false.'
),
)
_CALL_VARIANTS_EXTRA_ARGS = flags.DEFINE_string(
'call_variants_extra_args',
None,
(
'A comma-separated list of flag_name=flag_value. "flag_name" has to be'
' valid flags for call_variants.py. If the flag_value is boolean, it'
' has to be flag_name=true or flag_name=false.'
),
)
# Optional flag for postprocess variants
_POSTPROCESS_CPUS = flags.DEFINE_integer(
'postprocess_cpus',
None,
'Optional. Number of cpus to use during'
' postprocess_variants. Set to 0 to disable multiprocessing. Default is'
' None which sets to num_shards.',
)
_POSTPROCESS_VARIANTS_EXTRA_ARGS = flags.DEFINE_string(
'postprocess_variants_extra_args',
None,
(
'A comma-separated list of flag_name=flag_value. "flag_name" has to be'
' valid flags for postprocess_variants.py. If the flag_value is'
' boolean, it has to be flag_name=true or flag_name=false.'
),
)
# Optional flags for postprocess_variants.
_OUTPUT_GVCF = flags.DEFINE_string(
'output_gvcf', None, 'Optional. Path where we should write gVCF file.'
)
# Optional flags for vcf_stats_report.
_VCF_STATS_REPORT = flags.DEFINE_boolean(
'vcf_stats_report',
True,
(
'Optional. Output a visual report (HTML) of '
'statistics about the output VCF.'
),
)
_REPORT_TITLE = flags.DEFINE_string(
'report_title',
None,
(
'Optional. Title for the VCF stats report (HTML).'
'If not provided, the title will be the sample name.'
),
)
MODEL_TYPE_MAP = {
'WGS': '/opt/models/wgs',
'WES': '/opt/models/wes',
'PACBIO': '/opt/models/pacbio',
'ONT_R104': '/opt/models/ont_r104',
'HYBRID_PACBIO_ILLUMINA': '/opt/models/hybrid_pacbio_illumina',
}
# Current release version of DeepVariant.
# Should be the same in dv_vcf_constants.py.
DEEP_VARIANT_VERSION = '1.6.1'
def _is_quoted(value):
if value.startswith('"') and value.endswith('"'):
return True
if value.startswith("'") and value.endswith("'"):
return True
return False
def _add_quotes(value):
if isinstance(value, str) and _is_quoted(value):
return value
return '"{}"'.format(value)
def trim_suffix(string: str, suffix: str) -> str:
if string.endswith(suffix):
return string[: -len(suffix)]
else:
return string
def _extra_args_to_dict(extra_args: str) -> Dict[str, Any]:
"""Parses comma-separated list of flag_name=flag_value to dict."""
args_dict = {}
if extra_args is None:
return args_dict
for extra_arg in extra_args.split(','):
(flag_name, flag_value) = extra_arg.split('=')
flag_name = flag_name.strip('-')
# Check for boolean values.
if flag_value.lower() == 'true':
flag_value = True
elif flag_value.lower() == 'false':
flag_value = False
args_dict[flag_name] = flag_value
return args_dict
def _extend_command_by_args_dict(command, extra_args):
"""Adds `extra_args` to the command string."""
for key in sorted(extra_args):
value = extra_args[key]
if value is None:
continue
if isinstance(value, bool):
added_arg = '' if value else 'no'
added_arg += key
command.extend(['--' + added_arg])
else:
command.extend(['--' + key, _add_quotes(value)])
return command
def _update_kwargs_with_warning(kwargs, extra_args):
"""Updates `kwargs` with `extra_args`; gives a warning if values changed."""
for k, v in extra_args.items():
if k in kwargs:
if kwargs[k] != v:
print(
'\nWarning: --{} is previously set to {}, now to {}.'.format(
k, kwargs[k], v
)
)
kwargs[k] = v
return kwargs
def make_examples_command(
ref, reads, examples, extra_args, runtime_by_region_path=None, **kwargs
):
"""Returns a make_examples (command, logfile) for subprocess.
Args:
ref: Input FASTA file.
reads: Input BAM file.
examples: Output tfrecord file containing tensorflow.Example files.
extra_args: Comma-separated list of flag_name=flag_value.
runtime_by_region_path: Output path for runtime by region metrics.
**kwargs: Additional arguments to pass in for make_examples.
Returns:
(string, string) A command to run, and a log file to output to.
"""
command = [
'time',
'seq 0 {} |'.format(_NUM_SHARDS.value - 1),
'parallel -q --halt 2 --line-buffer',
'/opt/deepvariant/bin/make_examples',
]
command.extend(['--mode', 'calling'])
command.extend(['--ref', '"{}"'.format(ref)])
command.extend(['--reads', '"{}"'.format(reads)])
command.extend(['--examples', '"{}"'.format(examples)])
if runtime_by_region_path is not None:
command.extend(
['--runtime_by_region', '"{}"'.format(runtime_by_region_path)]
)
if _MODEL_TYPE.value == 'WGS' or _MODEL_TYPE.value == 'WES':
special_args = {}
special_args['channels'] = 'insert_size'
kwargs = _update_kwargs_with_warning(kwargs, special_args)
elif _MODEL_TYPE.value == 'PACBIO':
special_args = {}
special_args['add_hp_channel'] = True
special_args['alt_aligned_pileup'] = 'diff_channels'
special_args['max_reads_per_partition'] = 600
special_args['min_mapping_quality'] = 1
special_args['parse_sam_aux_fields'] = True
special_args['partition_size'] = 25000
special_args['phase_reads'] = True
special_args['pileup_image_width'] = 199
special_args['realign_reads'] = False
special_args['sort_by_haplotypes'] = True
special_args['track_ref_reads'] = True
special_args['vsc_min_fraction_indels'] = 0.12
kwargs = _update_kwargs_with_warning(kwargs, special_args)
elif _MODEL_TYPE.value == 'ONT_R104':
special_args = {}
special_args['add_hp_channel'] = True
special_args['alt_aligned_pileup'] = 'diff_channels'
special_args['max_reads_per_partition'] = 600
special_args['min_mapping_quality'] = 5
special_args['parse_sam_aux_fields'] = True
special_args['partition_size'] = 25000
special_args['phase_reads'] = True
special_args['pileup_image_width'] = 199
special_args['realign_reads'] = False
special_args['sort_by_haplotypes'] = True
special_args['track_ref_reads'] = True
special_args['vsc_min_fraction_snps'] = 0.08
special_args['vsc_min_fraction_indels'] = 0.12
kwargs = _update_kwargs_with_warning(kwargs, special_args)
# Extend the command with all items in kwargs and extra_args.
kwargs = _update_kwargs_with_warning(kwargs, _extra_args_to_dict(extra_args))
command = _extend_command_by_args_dict(command, kwargs)
command.extend(['--task {}'])
logfile = None
if _LOGGING_DIR.value:
logfile = '{}/make_examples.log'.format(_LOGGING_DIR.value)
return (' '.join(command), logfile)
def call_variants_command(
outfile: str,
examples: str,
model_ckpt: str,
extra_args: str,
use_slim_model: bool = False,
) -> Tuple[str, Optional[str]]:
"""Returns a call_variants (command, logfile) for subprocess."""
binary_name = 'call_variants'
if use_slim_model:
binary_name = 'call_variants_slim'
command = ['time', f'/opt/deepvariant/bin/{binary_name}']
command.extend(['--outfile', '"{}"'.format(outfile)])
command.extend(['--examples', '"{}"'.format(examples)])
command.extend(['--checkpoint', '"{}"'.format(model_ckpt)])
if extra_args and 'use_openvino' in extra_args:
raise RuntimeError(
'OpenVINO is not installed by default in DeepVariant '
'Docker images. Please rerun without use_openvino flag.'
)
# Extend the command with all items in extra_args.
command = _extend_command_by_args_dict(
command, _extra_args_to_dict(extra_args)
)
logfile = None
if _LOGGING_DIR.value:
logfile = '{}/{}.log'.format(_LOGGING_DIR.value, binary_name)
return (' '.join(command), logfile)
def postprocess_variants_command(
ref: str, infile: str, outfile: str, extra_args: str, **kwargs
) -> Tuple[str, Optional[str]]:
"""Returns a postprocess_variants (command, logfile) for subprocess."""
cpus = _POSTPROCESS_CPUS.value
if not cpus:
cpus = _NUM_SHARDS.value
command = ['time', '/opt/deepvariant/bin/postprocess_variants']
command.extend(['--ref', '"{}"'.format(ref)])
command.extend(['--infile', '"{}"'.format(infile)])
command.extend(['--outfile', '"{}"'.format(outfile)])
command.extend(['--cpus', '"{}"'.format(cpus)])
# Extend the command with all items in kwargs and extra_args.
kwargs = _update_kwargs_with_warning(kwargs, _extra_args_to_dict(extra_args))
command = _extend_command_by_args_dict(command, kwargs)
logfile = None
if _LOGGING_DIR.value:
logfile = '{}/postprocess_variants.log'.format(_LOGGING_DIR.value)
return (' '.join(command), logfile)
def vcf_stats_report_command(
vcf_path: str, title: Optional[str] = None
) -> Tuple[str, Optional[str]]:
"""Returns a vcf_stats_report (command, logfile) for subprocess.
Args:
vcf_path: Path to VCF, which will be passed to --input_vcf and
suffix-trimmed for --outfile_base.
title: Passed straight to command unless it's None.
Returns:
[command string for subprocess, optional log directory path]
"""
command = ['time', '/opt/deepvariant/bin/vcf_stats_report']
command.extend(['--input_vcf', '"{}"'.format(vcf_path)])
outfile_base = trim_suffix(trim_suffix(vcf_path, '.gz'), '.vcf')
command.extend(['--outfile_base', '"{}"'.format(outfile_base)])
if title is not None:
command.extend(['--title', '"{}"'.format(title)])
logfile = None
if _LOGGING_DIR.value:
logfile = '{}/vcf_stats_report.log'.format(_LOGGING_DIR.value)
return (' '.join(command), logfile)
def runtime_by_region_vis_command(
runtime_by_region_path: str, title: str = 'DeepVariant'
) -> Tuple[str, None]:
"""Returns a runtime_by_region_vis (command, logfile=None) for subprocess."""
runtime_report = os.path.join(
_LOGGING_DIR.value, 'make_examples_runtime_by_region_report.html'
)
command = ['time', '/opt/deepvariant/bin/runtime_by_region_vis']
command.extend(['--input', '"{}"'.format(runtime_by_region_path)])
command.extend(['--title', '"{}"'.format(title)])
command.extend(['--output', '"{}"'.format(runtime_report)])
return (' '.join(command), None)
def check_or_create_intermediate_results_dir(
intermediate_results_dir: Optional[str],
) -> str:
"""Checks or creates the path to the directory for intermediate results."""
if intermediate_results_dir is None:
intermediate_results_dir = tempfile.mkdtemp()
if not os.path.isdir(intermediate_results_dir):
logging.info(
'Creating a directory for intermediate results in %s',
intermediate_results_dir,
)
os.makedirs(intermediate_results_dir)
else:
logging.info(
'Re-using the directory for intermediate results in %s',
intermediate_results_dir,
)
return intermediate_results_dir
def check_flags():
"""Additional logic to make sure flags are set appropriately."""
if _CUSTOMIZED_MODEL.value is not None:
use_saved_model = tf.io.gfile.exists(
_CUSTOMIZED_MODEL.value
) and tf.io.gfile.exists(f'{_CUSTOMIZED_MODEL.value}/saved_model.pb')
if use_saved_model:
logging.info('Using saved model: %s', str(use_saved_model))
elif (
not tf.io.gfile.exists(_CUSTOMIZED_MODEL.value + '.data-00000-of-00001')
or not tf.io.gfile.exists(_CUSTOMIZED_MODEL.value + '.index')
or (
_USE_SLIM_MODEL.value
and not tf.io.gfile.exists(_CUSTOMIZED_MODEL.value + '.meta')
)
):
raise RuntimeError(
'The model files {}* do not exist. Potentially '
'relevant issue: '
'https://github.com/google/deepvariant/blob/r1.6.1/docs/'
'FAQ.md#why-cant-it-find-one-of-the-input-files-eg-'
'could-not-open'.format(_CUSTOMIZED_MODEL.value)
)
logging.info(
(
'You set --customized_model. Instead of using the default '
'model for %s, `call_variants` step will load %s* '
'instead.'
),
_MODEL_TYPE.value,
_CUSTOMIZED_MODEL.value,
)
def get_model_ckpt(model_type, customized_model):
"""Return the path to the model checkpoint based on the input args."""
if customized_model is not None:
return customized_model
else:
return MODEL_TYPE_MAP[model_type]
def create_all_commands_and_logfiles(intermediate_results_dir):
"""Creates 3 (command, logfile) to be executed later."""
check_flags()
commands = []
# make_examples
nonvariant_site_tfrecord_path = None
if _OUTPUT_GVCF.value is not None:
nonvariant_site_tfrecord_path = os.path.join(
intermediate_results_dir,
'gvcf.tfrecord@{}.gz'.format(_NUM_SHARDS.value),
)
examples = os.path.join(
intermediate_results_dir,
'make_examples.tfrecord@{}.gz'.format(_NUM_SHARDS.value),
)
if _LOGGING_DIR.value and _RUNTIME_REPORT.value:
runtime_directory = os.path.join(
_LOGGING_DIR.value, 'make_examples_runtime_by_region'
)
if not os.path.isdir(runtime_directory):
logging.info(
'Creating a make_examples runtime by region directory in %s',
runtime_directory,
)
os.makedirs(runtime_directory)
# The path to runtime metrics output is sharded just like the examples.
runtime_by_region_path = os.path.join(
runtime_directory,
'make_examples_runtime@{}.tsv'.format(_NUM_SHARDS.value),
)
else:
runtime_by_region_path = None
commands.append(
make_examples_command(
ref=_REF.value,
reads=_READS.value,
examples=examples,
runtime_by_region_path=runtime_by_region_path,
extra_args=_MAKE_EXAMPLES_EXTRA_ARGS.value,
# kwargs:
gvcf=nonvariant_site_tfrecord_path,
regions=_REGIONS.value,
sample_name=_SAMPLE_NAME.value,
)
)
# call_variants
call_variants_output = os.path.join(
intermediate_results_dir, 'call_variants_output.tfrecord.gz'
)
model_ckpt = get_model_ckpt(_MODEL_TYPE.value, _CUSTOMIZED_MODEL.value)
commands.append(
call_variants_command(
outfile=call_variants_output,
examples=examples,
model_ckpt=model_ckpt,
extra_args=_CALL_VARIANTS_EXTRA_ARGS.value,
use_slim_model=_USE_SLIM_MODEL.value,
)
)
# postprocess_variants
commands.append(
postprocess_variants_command(
ref=_REF.value,
infile=call_variants_output,
outfile=_OUTPUT_VCF.value,
extra_args=_POSTPROCESS_VARIANTS_EXTRA_ARGS.value,
nonvariant_site_tfrecord_path=nonvariant_site_tfrecord_path,
gvcf_outfile=_OUTPUT_GVCF.value,
sample_name=_SAMPLE_NAME.value,
haploid_contigs=_HAPLOID_CONTIGS.value,
par_regions_bed=_PAR_REGIONS.value,
)
)
# vcf_stats_report
if _VCF_STATS_REPORT.value:
commands.append(
vcf_stats_report_command(
vcf_path=_OUTPUT_VCF.value, title=_REPORT_TITLE.value
)
)
# runtime-by-region
if _LOGGING_DIR.value and _RUNTIME_REPORT.value:
commands.append(
runtime_by_region_vis_command(
runtime_by_region_path, title=_REPORT_TITLE.value
)
)
return commands
def main(_):
if _USE_HP_INFORMATION.value:
raise NotImplementedError(
'The --use_hp_information flag has been '
'deprecated. DeepVariant now phases internally '
'for PacBio mode.'
)
if _VERSION.value:
print('DeepVariant version {}'.format(DEEP_VARIANT_VERSION))
return
for flag_key in ['model_type', 'ref', 'reads', 'output_vcf']:
if FLAGS.get_flag_value(flag_key, None) is None:
sys.stderr.write('--{} is required.\n'.format(flag_key))
sys.stderr.write('Pass --helpshort or --helpfull to see help on flags.\n')
sys.exit(1)
intermediate_results_dir = check_or_create_intermediate_results_dir(
_INTERMEDIATE_RESULTS_DIR.value
)
if _LOGGING_DIR.value and not os.path.isdir(_LOGGING_DIR.value):
logging.info('Creating a directory for logs in %s', _LOGGING_DIR.value)
os.makedirs(_LOGGING_DIR.value)
commands_logfiles = create_all_commands_and_logfiles(intermediate_results_dir)
print(
'\n***** Intermediate results will be written to {} '
'in docker. ****\n'.format(intermediate_results_dir)
)
for command, logfile in commands_logfiles:
print('\n***** Running the command:*****\n{}\n'.format(command))
if not _DRY_RUN.value:
fp = open(logfile, 'w') if logfile is not None else None
with subprocess.Popen(
command,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
bufsize=1,
shell=True,
executable='/bin/bash',
universal_newlines=True,
) as proc:
for line in proc.stdout:
print(line, end='')
if fp is not None:
print(line, end='', file=fp)
if fp is not None:
fp.close()
if proc.returncode != 0:
sys.exit(proc.returncode)
if __name__ == '__main__':
app.run(main)