-
Notifications
You must be signed in to change notification settings - Fork 0
/
데이터분석 시각화 문제 (최종).py
300 lines (218 loc) · 7.42 KB
/
데이터분석 시각화 문제 (최종).py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
#!/usr/bin/env python
# coding: utf-8
# In[1]:
# -*- incoding: utf-8 -*-
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import time as t
# In[2]:
covid19 = []
date = []
xl=pd.ExcelFile("covid.xls")
df=xl.parse('Sheet1')
for day in df['날짜']:
date.append((str(day)[5:7] + '/' + str(day)[8:10]))
for i, d in enumerate(date):
covid19.append({'date': d, 'people': df['일별확진자수'][i]})
covid19
# covid19 = [
# {'date': '04/25', 'people': 10},
# {'date': '04/26', 'people': 10},
# {'date': '04/27', 'people': 10},
# {'date': '04/28', 'people': 14},
# {'date': '04/29', 'people': 9},
# {'date': '04/30', 'people': 4},
# {'date': '05/01', 'people': 4},
# ]
# In[3]:
plt.rc('font', family='Malgun Gothic')
date = []
people = []
for day in covid19:
date.append(day['date'])
people.append(day['people'])
plt.figure(figsize = (12, 6))
plt.plot(date, people, color='pink', label='확진자 수')
plt.grid(True, color='gray', alpha=0.5)
plt.xlabel('날짜',fontsize=14)
plt.ylabel('확진자 수',fontsize=14)
plt.title('코로나19 일별 확진자 수',fontsize='18')
plt.legend()
# ## [문제2] 누적 확진자 수와 누적 격리해제에 대한 시각화하기
# In[4]:
covid19 = {}
date = []
xl=pd.ExcelFile("covid.xls")
df=xl.parse('Sheet1')
for day in df['날짜']:
date.append((str(day)[5:7] + '/' + str(day)[8:10]))
for i, d in enumerate(date):
covid19.update({d: {'확진': df['누적환자수'][i], '격리해제': df['누적격리해제'][i]}})
covid19
# covid19 = {
# '04/25': {"확진": 10718, '격리해제': 8635},
# '04/26': {"확진": 10728, '격리해제': 8717},
# '04/27': {"확진": 10738, '격리해제': 8764},
# '04/28': {"확진": 10752, '격리해제': 8854},
# '04/29': {"확진": 10761, '격리해제': 8922},
# '04/30': {"확진": 10765, '격리해제': 9059},
# '05/01': {"확진": 10774, '격리해제': 9072},
# }
# In[5]:
date = []
hak = []
kyeok = []
for day in covid19.items():
date.append(day[0])
hak.append(day[1]['확진'])
kyeok.append(day[1]['격리해제'])
plt.figure(figsize = (12, 6))
plt.plot(date, hak, label='누적 확진자 수', color='red')
plt.plot(date, kyeok, label='누적 격리해제', color='orange')
plt.legend(loc="center left", title='범주')
plt.grid(True, color='gray', alpha=0.5)
plt.xlabel('날짜',fontsize=14)
plt.ylabel('명',fontsize=14)
plt.title('코로나19 확진, 격리해제 추세',fontsize='18')
# ## [문제3] 연령대별 확진자 수 시각화하기
# In[6]:
xl=pd.ExcelFile("covid.xls")
df=xl.parse('Sheet2')
covid19 = dict(zip(df['구분'], df['확진자(명)']))
covid19
# covid19 = {
# "80이상": 488,
# "70~79": 710,
# "60~69": 1351,
# "50~59": 1956,
# "40~49": 1432,
# "30~39": 1163,
# "20~29": 2962,
# "10~19": 591,
# "0~9": 140,
# }
# In[7]:
age = []
people = []
for day in covid19.items():
age.append(day[0])
people.append(day[1])
plt.figure(figsize = (16,8))
for i in range(len(age)):
plt.text(people[i], i-0.1, f"{people[i]}명", color='red', size='large')
plt.barh(age, people, label='확진자 수')
plt.legend(loc="best")
plt.grid(True, color='gray', alpha=0.5)
plt.xlabel('연령대',fontsize=14)
plt.ylabel('명',fontsize=14)
plt.title('코로나19 연령대별 확진자 수',fontsize='18')
# ## [문제4] 연령대별 확진/사망자 수 시각화하기
# In[8]:
date = []
people = []
covid19 = {}
xl=pd.ExcelFile("covid.xls")
df=xl.parse('Sheet2')
for i in range(df['구분'].size):
covid19.update({df['구분'][i]: {'확진': df['확진자(명)'][i], '사망': df['사망자(명)'][i]}})
covid19
# covid19 = {
# "80이상": {"확진": 488, "사망": 120},
# "70~79": {"확진": 710, "사망": 75},
# "60~69": {"확진": 1351, "사망": 35},
# "50~59": {"확진": 1956, "사망": 15},
# "40~49": {"확진": 1432, "사망": 3},
# "30~39": {"확진": 1163, "사망": 2},
# "20~29": {"확진": 2962, "사망": 0},
# "10~19": {"확진": 591, "사망": 0},
# "0~9": {"확진": 140, "사망": 0},
# }
# In[9]:
bar_width = 0.4
age = []
live = []
dead = []
for day in covid19.items():
age.append(day[0])
live.append(day[1]['확진'])
dead.append(day[1]['사망'])
x = np.arange(0, len(age))
plt.figure(figsize = (16, 8))
for i in range(len(age)):
plt.text(i-0.2, live[i]+20, f'{live[i]}명', size='medium', ha='center', color='blue')
plt.text(i+0.2, dead[i]+20, f'{dead[i]}명', size='medium', ha='center', color='red')
plt.bar(x-0.2, live, bar_width, label='확진')
plt.bar(x+0.2, dead, bar_width, label='사망', color='red')
plt.legend(loc="best")
plt.grid(True, color='gray', alpha=0.5)
plt.xlabel('연령대',fontsize=14)
plt.ylabel('명',fontsize=14)
plt.title('연령대별 확진자/사망자 수',fontsize='18')
plt.xticks(x, labels=age)
# ## [문제5] 연령대별 확진비율 시각화하기
# In[10]:
covid19
# In[11]:
age = []
live = []
for day in covid19.items():
age.append(day[0])
live.append(day[1]['확진'])
plt.figure(figsize = (10, 10))
plt.pie(live, labels=age, autopct='%1.2f%%')
plt.title('연령대별 확진 비율',fontsize='18')
# ## [문제6] 교통 사고 통계 분석 시각화 하기
#
# #### 1) 데이터 가져오기
# In[12]:
import numpy
from pandas import DataFrame
from pandas import read_csv
from matplotlib import pyplot as plt
data=read_csv('traffic.csv', encoding='cp949')
data
# #### 2) 데이터 전처리 하기
# In[13]:
data_for_year = []
for i in range(2005, 2018+1):
year = data[data["년도"] == i]
data_for_year.append([i, sum(year['발생건수']), sum(year['사망자수']), sum(year['부상자수'])])
df = DataFrame(data_for_year, columns=['년도','발생건수','사망자수', '부상자수'])
df
# #### 3) 년도별 교통사고 발생현황 시각화 하기
# In[14]:
plt.figure(figsize = (14, 7))
plt.plot(df['년도'], df['발생건수'], color='red', label='발생건수')
plt.grid(True, color='gray', alpha=0.5)
plt.xlabel('년도',fontsize=14)
plt.ylabel('교통사고 수',fontsize=14)
plt.title('년도별 교통사고 발생현황',fontsize='18')
plt.xticks(df['년도'], labels=map(lambda x: f'{x}년', df['년도']))
plt.legend()
# #### 4) 년도별 교통사고 발생현황 시각화 하기
#
# In[15]:
plt.figure(figsize = (14, 7))
plt.plot(df['년도'], df['발생건수'], color='RoyalBlue', label='발생건수')
plt.plot(df['년도'], df['사망자수'], color='SandyBrown', label='사망자수')
plt.plot(df['년도'], df['부상자수'], color='OliveDrab', label='부상자수')
plt.grid(True, color='gray', alpha=0.5)
plt.xlabel('년도',fontsize=14)
plt.ylabel('교통사고 수',fontsize=14)
plt.title('년도별 교통사고 발생현황',fontsize='18')
plt.xticks(df['년도'], labels=map(lambda x: f'{x}년', df['년도']))
plt.legend()
# #### 5) 추세선을 포함한 산점도 그래프 그리기
# In[32]:
from matplotlib.pylab import plot
plt.figure(figsize = (14, 7))
plt.scatter(data['발생건수'], data['부상자수'], s=16, c='Tomato')
plt.grid(True, color='gray', alpha=0.5)
plt.xlabel('발생건수',fontsize=14)
plt.ylabel('부상자수',fontsize=14)
plt.title('교통사고 발생건수와 부상자수의 상관관계',fontsize='18')
z = np.polyfit(data['발생건수'], data['부상자수'], 1) # (X, Y, 차원)
p = np.poly1d(z) # 1차원 다항식에 대한 연산을 캡슐화
plot(data['발생건수'] ,p(data['발생건수']), c='r')
plt.show()