forked from FNBUBBLES420-ORG/game-vision-aid
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
185 lines (158 loc) · 7.12 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import sys
import numpy as np
import cupy as cp # Importing CuPy for GPU-accelerated operations (NVIDIA GPU)
import cv2
import torch
import onnxruntime as ort
import time
import bettercam
import os
from colorama import Fore, Style, init
import config
import customtkinter as ctk
import win32api
import win32con
import win32gui
# Enhanced BetterCam Initialization with multiple device support, error handling
class BetterCamEnhanced:
def __init__(self, max_buffer_len=config.maxBufferLen, target_fps=config.targetFPS, region=None, monitor_idx=0):
self.camera = None
self.max_buffer_len = max_buffer_len
self.target_fps = target_fps
self.region = region
self.monitor_idx = monitor_idx # Monitor index for multi-monitor support
self.is_capturing = False
self.buffer = []
def start(self):
try:
# Create BetterCam instance for the selected monitor
self.camera = bettercam.create(monitor_idx=self.monitor_idx, max_buffer_len=self.max_buffer_len)
self.camera.start(target_fps=self.target_fps)
self.is_capturing = True
print(Fore.GREEN + f"BetterCam started on monitor {self.monitor_idx} with target FPS: {self.target_fps}")
except Exception as e:
print(Fore.RED + f"Error starting BetterCam: {e}")
sys.exit(1)
def grab_frame(self):
try:
if self.region:
frame = self.camera.grab(region=self.region)
else:
frame = self.camera.grab()
if frame is not None:
return frame
else:
print(Fore.RED + "Failed to grab frame.")
return None
except Exception as e:
print(Fore.RED + f"Error capturing frame: {e}")
return None
def stop(self):
try:
self.camera.stop()
self.is_capturing = False
print(Fore.GREEN + "BetterCam stopped.")
except Exception as e:
print(Fore.RED + f"Error stopping BetterCam: {e}")
# Model loading function with support for both YOLOv5 and YOLOv8, CUDA, and DirectML
def load_model(model_path=None):
try:
model_path = model_path or (config.torchModelPath if config.modelType == 'torch' else config.onnxModelPath)
start_time = time.time()
# Check for PyTorch model (.pt)
if model_path.endswith('.pt'):
if 'yolov8' in model_path.lower():
model = torch.hub.load('ultralytics/yolov8', 'custom', path=model_path, force_reload=True)
else:
model = torch.hub.load('ultralytics/yolov5', 'custom', path=model_path, force_reload=True)
model_type = 'torch'
# Check for ONNX model (.onnx)
elif model_path.endswith('.onnx'):
# Try to load with DirectML if CUDA is not available
if torch.cuda.is_available():
providers = ['CUDAExecutionProvider']
else:
providers = ['DmlExecutionProvider']
model = ort.InferenceSession(model_path, providers=providers)
model_type = 'onnx'
# Check for TensorRT model (.engine)
elif model_path.endswith('.engine'):
# TensorRT model loading logic should be added here
print(Fore.YELLOW + "TensorRT model detected. Ensure the correct environment for TensorRT is set up.")
model = None # Placeholder for TensorRT engine loading
model_type = 'engine'
else:
raise ValueError(f"Unsupported model format for {model_path}")
end_time = time.time()
print(f"Model loaded in {end_time - start_time:.2f} seconds")
return model, model_type
except Exception as e:
print(f"Error loading model: {e}")
sys.exit(1)
# Object detection function with CUDA and DirectML support
def detect_objects(model, model_type, frame, device):
try:
if model_type == 'torch':
# Use cupy for tensor conversion if necessary (CUDA)
frame_tensor = torch.from_numpy(cp.asnumpy(frame)).to(device)
results = model(frame_tensor)
elif model_type == 'onnx':
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame_resized = cv2.resize(frame_rgb, (config.screenWidth, config.screenHeight))
input_tensor = frame_resized.astype(np.float32) # Removed cp for non-CUDA GPUs
input_tensor = np.expand_dims(input_tensor, axis=0).transpose(0, 3, 1, 2)
input_tensor /= 255.0
# Use GPU-accelerated tensor processing with DirectML or CUDA
outputs = model.run(None, {model.get_inputs()[0].name: input_tensor})
results = outputs[0]
elif model_type == 'engine':
print(Fore.YELLOW + "TensorRT inference is not yet implemented. Placeholder code for TensorRT.")
results = None # Placeholder for TensorRT inference results
return results
except Exception as e:
print(f"Error during detection: {e}")
return None
# Main function that sets up GPU support for both NVIDIA and AMD
def main():
init(autoreset=True)
input("Make sure the game is running. Press Enter to continue...")
# Determine if an NVIDIA (CUDA) or AMD (DirectML) GPU is available
if torch.cuda.is_available():
device = 'cuda'
print("CUDA-enabled GPU found. Using NVIDIA GPU.")
else:
try:
# Check if DirectML for AMD GPUs is available
device = torch.device('dml') # DirectML for PyTorch on AMD GPUs
print("Using AMD GPU with DirectML.")
except:
device = 'cpu'
print("No CUDA or DirectML GPU found. Using CPU.")
camera = BetterCamEnhanced(target_fps=config.targetFPS, monitor_idx=config.monitorIdx)
camera.start()
model, model_type = load_model()
if model_type == 'torch' and device != 'cpu':
model = model.to(device)
overlay = Overlay(width=config.overlayWidth, height=config.overlayHeight, alpha=config.overlayAlpha)
overlay.toggle() # Start the overlay
overlay_color = get_color_from_input()
try:
while True:
frame = capture_screen(camera)
if frame is not None:
results = detect_objects(model, model_type, frame, device)
frame = draw_bounding_boxes(frame, results, overlay_color, model_type)
cv2.imshow("YOLO Detection", frame)
if results and model_type == 'torch':
coordinates = [[xmin, ymin, xmax, ymax] for xmin, ymin, xmax, ymax, _, _ in results.xyxy[0]]
overlay.update(coordinates) # Update the overlay with bounding box coordinates
if cv2.waitKey(1) & 0xFF == ord('q'):
break
except KeyboardInterrupt:
pass
finally:
camera.stop()
overlay.toggle() # Close the overlay
cv2.destroyAllWindows()
if __name__ == "__main__":
main()