-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
58 lines (39 loc) · 1.33 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from tkinter import*
from tkinter import ttk
from PIL import Image,ImageTk
from tkinter import messagebox
import mysql.connector
import cv2
import os
import numpy as np
class Train:
def __init__(self,root):
self.root=root
self.root.geometry("1500x700+0+0")
self.root.title("Attendance Management System")
save_btn=Button(self.root,text="TRAIN DATA",command=self.train_classifier,width=30,height=5,font=("times new roman",20,"bold"))
save_btn.place(x=500,y=250)
def train_classifier(self):
data_dir=("data")
path=[os.path.join(data_dir,file) for file in os.listdir(data_dir)]
faces=[]
ids=[]
for image in path:
img=Image.open(image).convert('L')
imageNp=np.array(img,'uint8')
id=int(os.path.split(image)[1].split('.')[1])
faces.append(imageNp)
ids.append(id)
cv2.imshow("Training",imageNp)
cv2.waitKey(1)==13
ids=np.array(ids)
##Train the Classifier
clf=cv2.face.LBPHFaceRecognizer_create()
clf.train(faces,ids)
clf.write("classifier.xml")
cv2.destroyAllWindows()
messagebox.showinfo("Result","Training Dataset Completed")
if __name__== "__main__":
root=Tk()
obj=Train(root)
root.mainloop()