-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinference.py
184 lines (162 loc) · 6.13 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# Copyright (c) 2024 Ming-Yang Ho, Che-Ming Wu, and Min-Sheng Wu
# All rights reserved.
#
# This source code is licensed under the AGPL License found in the
# LICENSE file in the root directory of this source tree.
import argparse
import os
from pathlib import Path
import torch
from torch.utils.data import DataLoader
from torchvision.utils import save_image
from models.model import get_model
from utils.dataset import XInferenceDataset, XPrefetchInferenceDataset
from utils.util import (read_yaml_config, reverse_image_normalize,
test_transforms)
MARGIN_PADDING = 16
def main():
parser = argparse.ArgumentParser("Model inference")
parser.add_argument(
"-c",
"--config",
type=str,
default="./data/example/config.yaml",
help="Path to the config file.",
)
args = parser.parse_args()
config = read_yaml_config(args.config)
model = get_model(
config=config,
model_name=config["MODEL_NAME"],
normalization=config["INFERENCE_SETTING"]["NORMALIZATION"],
isTrain=False,
parallelism=config["INFERENCE_SETTING"].get('PARALLELISM', False),
)
if config["INFERENCE_SETTING"]["NORMALIZATION"] != 'dn':
raise ValueError('This normalization method is not supported')
if config["INFERENCE_SETTING"].get('PARALLELISM', False):
test_dataset = XPrefetchInferenceDataset(
root_X=config["INFERENCE_SETTING"]["TEST_DIR_X"],
transform=test_transforms,
return_anchor=True,
pad=MARGIN_PADDING,
)
else:
test_dataset = XInferenceDataset(
root_X=config["INFERENCE_SETTING"]["TEST_DIR_X"],
transform=test_transforms,
return_anchor=True,
pad=MARGIN_PADDING,
)
test_loader = DataLoader(
test_dataset, batch_size=1, shuffle=False, pin_memory=True,
)
model.load_networks(config["INFERENCE_SETTING"]["MODEL_VERSION"])
basename = os.path.basename(config["INFERENCE_SETTING"]["TEST_X"])
filename = os.path.splitext(basename)[0]
save_path_root = os.path.join(
config["EXPERIMENT_ROOT_PATH"],
config["EXPERIMENT_NAME"],
"test",
filename,
)
if (
"OVERWRITE_OUTPUT_PATH" in config["INFERENCE_SETTING"]
and config["INFERENCE_SETTING"]["OVERWRITE_OUTPUT_PATH"] != ""
):
save_path_root = config["INFERENCE_SETTING"]["OVERWRITE_OUTPUT_PATH"]
save_path_base = os.path.join(
save_path_root,
config["INFERENCE_SETTING"]["NORMALIZATION"],
config["INFERENCE_SETTING"]["MODEL_VERSION"],
)
os.makedirs(save_path_base, exist_ok=True)
print(save_path_base)
if not config["INFERENCE_SETTING"].get('PARALLELISM', False):
os.makedirs(save_path_base, exist_ok=True)
y_anchor_num, x_anchor_num = test_dataset.get_boundary()
# as the anchor num from 0 to N,
# anchor_num = N but it actually has N + 1 values
model.init_dense_instance_norm_for_whole_model(
y_anchor_num=y_anchor_num + 1,
x_anchor_num=x_anchor_num + 1,
)
for idx, data in enumerate(test_loader):
print(f"Caching {idx}", end="\r")
X, X_path, y_anchor, x_anchor = (
data["X_img"],
data["X_path"],
data["y_idx"],
data["x_idx"],
)
_ = model.inference_with_anchor(
X,
y_anchor=y_anchor,
x_anchor=x_anchor,
padding=1,
)
model.use_dense_instance_norm_for_whole_model()
for idx, data in enumerate(test_loader):
print(f"Processing {idx}", end="\r")
X, X_path, y_anchor, x_anchor = (
data["X_img"],
data["X_path"],
data["y_idx"],
data["x_idx"],
)
Y_fake = model.inference_with_anchor(
X,
y_anchor=y_anchor,
x_anchor=x_anchor,
padding=1,
)
Y_fake = Y_fake[:, :, MARGIN_PADDING:512 + MARGIN_PADDING, MARGIN_PADDING:512 + MARGIN_PADDING] # noqa
if config["INFERENCE_SETTING"]["SAVE_ORIGINAL_IMAGE"]:
save_image(
reverse_image_normalize(X),
os.path.join(
save_path_base,
f"{Path(X_path[0]).stem}_X_{idx}.png",
),
)
save_image(
reverse_image_normalize(Y_fake),
os.path.join(
save_path_base,
f"{Path(X_path[0]).stem}_Y_fake_{idx}.png",
),
)
else:
os.makedirs(save_path_base, exist_ok=True)
y_anchor_num, x_anchor_num = test_dataset.get_boundary()
# as the anchor num from 0 to N,
# anchor_num = N but it actually has N + 1 values
model.init_prefetch_dense_instance_norm_for_whole_model(
y_anchor_num=y_anchor_num + 1,
x_anchor_num=x_anchor_num + 1,
)
for idx, data in enumerate(test_loader):
print(f"Executing {idx}", end="\r")
images = [data['X_img']] + data['pre_img']
X = torch.cat(images, dim=0)
Y_fake = model.inference_with_anchor(
X,
y_anchor=int(data['y_idx'][0]),
x_anchor=int(data['x_idx'][0]),
padding=1,
pre_y_anchor=[int(i) for i in data['pre_y_idx']],
pre_x_anchor=[int(i) for i in data['pre_x_idx']],
)
Y_fake = Y_fake[[0]]
Y_fake = Y_fake[:, :, MARGIN_PADDING:512 + MARGIN_PADDING, MARGIN_PADDING:512 + MARGIN_PADDING] # noqa
if data['y_idx'][0] != -1:
X_path = data['X_path']
save_image(
reverse_image_normalize(Y_fake),
os.path.join(
save_path_base,
f"{Path(X_path[0]).stem}_Y_fake_{idx}.png",
),
)
if __name__ == "__main__":
main()