-
-
Notifications
You must be signed in to change notification settings - Fork 8
/
train_center_ride_mixup.py
337 lines (271 loc) · 15.5 KB
/
train_center_ride_mixup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
######################################
# Kaihua Tang
######################################
import torch
import torch.nn as nn
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import torch.nn.functional as F
import utils.general_utils as utils
from data.dataloader import get_loader
from utils.checkpoint_utils import Checkpoint
from utils.training_utils import *
from utils.test_loader import test_loader
class train_center_ride_mixup():
def __init__(self, args, config, logger, eval=False):
# ============================================================================
# create model
logger.info('=====> Model construction from: ' + str(config['networks']['type']))
model_type = config['networks']['type']
model_file = config['networks'][model_type]['def_file']
model_args = config['networks'][model_type]['params']
logger.info('=====> Classifier construction from: ' + str(config['classifiers']['type']))
classifier_type = config['classifiers']['type']
classifier_file = config['classifiers'][classifier_type]['def_file']
classifier_args = config['classifiers'][classifier_type]['params']
model = utils.source_import(model_file).create_model(**model_args)
classifier = utils.source_import(classifier_file).create_model(**classifier_args)
model = nn.DataParallel(model).cuda()
classifier = nn.DataParallel(classifier).cuda()
# other initialization
self.algorithm_opt = config['algorithm_opt']
self.args = args
self.config = config
self.logger = logger
self.model = model
self.classifier = classifier
self.optimizer = create_optimizer(model, classifier, logger, config)
self.scheduler = create_scheduler(self.optimizer, logger, config)
self.eval = eval
self.training_opt = config['training_opt']
self.checkpoint = Checkpoint(config)
# get dataloader
self.logger.info('=====> Get train dataloader')
self.train_loader = get_loader(config, 'train', config['dataset']['testset'], logger)
# get loss
self.loss_fc = create_loss(logger, config, self.train_loader)
if self.algorithm_opt['cos_loss']:
self.loss_center = CenterCosLoss(num_classes=classifier_args['num_classes'], feat_dim=classifier_args['feat_dim'] * 3)
else:
self.loss_center = CenterLoss(num_classes=classifier_args['num_classes'], feat_dim=classifier_args['feat_dim'] * 3)
self.center_optimizer = torch.optim.SGD(self.loss_center.parameters(), lr=0.5)
# set eval
if self.eval:
test_func = test_loader(config)
self.testing = test_func(config, logger, model, classifier, val=True)
def get_center_weight(self, epoch):
center_weight = self.algorithm_opt['center_weights'][0]
for i, ms in enumerate(self.algorithm_opt['center_milestones']):
if epoch >= ms:
center_weight = self.algorithm_opt['center_weights'][i]
self.logger.info('Center Weight: {}'.format(center_weight))
return center_weight
def mixup_data(self, x, y, alpha=1.0):
lam = np.random.beta(alpha, alpha) if alpha > 0 else 1
batch_size = x.shape[0]
index = torch.randperm(batch_size).to(x.device)
mixed_x = lam * x + (1 - lam) * x[index]
y_a, y_b = y, y[index]
return mixed_x, y_a, y_b, lam
def mixup_criterion(self, pred, y_a, y_b, lam, extra_info):
return lam * self.loss_fc(pred, y_a, extra_info) + (1 - lam) * self.loss_fc(pred, y_b, extra_info)
def mixup_center_criterion(self, feat, pred, y_a, y_b, lam):
return lam * self.loss_center(feat, y_a) + (1 - lam) * self.loss_center(feat, y_b)
def mixup_accuracy(self, pred, y_a, y_b, lam):
correct = lam * (pred.max(1)[1] == y_a) + (1 - lam) * (pred.max(1)[1] == y_b)
accuracy = correct.sum().float() / pred.shape[0]
return accuracy
def run(self):
# Start Training
self.logger.info('=====> Start Center Loss and Mixup with RIDE backbone Training')
# preprocess for each epoch
env1_loader, env2_loader = self.train_loader
assert len(env1_loader) == len(env2_loader)
total_batch = len(env1_loader)
total_image = len(env1_loader.dataset)
# run epoch
num_epoch = self.training_opt['num_epochs']
for epoch in range(num_epoch):
self.logger.info('------------ Start Epoch {} -----------'.format(epoch))
self.logger.info('--------------- Environment Type {} -----------'.format(self.algorithm_opt['env_type']))
# saving training info for environments building
all_ind = []
all_lab = []
all_prb = []
all_lgt = []
center_weight = self.get_center_weight(epoch)
if self.training_opt['loss'] == 'RIDE':
self.loss_fc.set_epoch(epoch)
for step, ((inputs1, labels1, _, indexs1), (inputs2, labels2, _, indexs2)) in enumerate(zip(env1_loader, env2_loader)):
iter_info_print = {}
self.optimizer.zero_grad()
# additional inputs
inputs = torch.cat([inputs1, inputs2], dim=0).cuda()
labels = torch.cat([labels1, labels2], dim=0).cuda()
indexs = torch.cat([indexs1, indexs2], dim=0).cuda()
add_inputs = {}
# mixup
inputs, labels_a, labels_b, lam = self.mixup_data(inputs, labels)
features = self.model(inputs)
predictions, all_logits = self.classifier(features, add_inputs)
# calculate loss
if self.training_opt['loss'] == 'RIDE':
extra_info = {'logits': all_logits}
loss_ce = self.mixup_criterion(predictions, labels_a, labels_b, lam, extra_info)
iter_info_print[self.training_opt['loss']] = loss_ce.sum().item()
else:
ce_losses = []
for logit in all_logits:
ce_losses.append(lam * self.loss_fc(logit, labels_a) + (1 - lam) * self.loss_fc(logit, labels_b))
loss_ce = sum(ce_losses)
for i, branch_loss in enumerate(ce_losses):
iter_info_print[self.training_opt['loss'] + '_{}'.format(i)] = branch_loss.sum().item()
# center loss
self.center_optimizer.zero_grad()
loss_ct = self.mixup_center_criterion(features.view(features.shape[0], -1), predictions, labels_a, labels_b, lam) * center_weight
iter_info_print['center_loss'] = loss_ct.sum().item()
# backward
loss = loss_ce + loss_ct
loss.backward()
self.optimizer.step()
# multiple (1./alpha) in order to remove the effect of alpha on updating centers
for param in self.loss_center.parameters():
param.grad.data *= (1./(center_weight + 1e-12))
self.center_optimizer.step()
# calculate accuracy
accuracy = self.mixup_accuracy(predictions, labels_a, labels_b, lam)
# save info for environment spliting
all_lgt.append(predictions.detach().clone().cpu())
predictions = predictions.softmax(-1)
gt_score = torch.gather(predictions, 1, torch.unsqueeze(labels, 1)).view(-1)
all_ind.append(indexs.detach().clone().cpu())
all_lab.append(labels.detach().clone().cpu())
all_prb.append(gt_score.detach().clone().cpu())
# log information
iter_info_print.update({'Accuracy' : accuracy.item(), 'Loss' : loss.sum().item(), 'Poke LR' : float(self.optimizer.param_groups[0]['lr'])})
self.logger.info_iter(epoch, step, total_batch, iter_info_print, self.config['logger_opt']['print_iter'])
first_batch = (epoch == 0) and (step == 0)
if first_batch or self.config['logger_opt']['print_grad'] and step % 1000 == 0:
utils.print_grad(self.classifier.named_parameters())
utils.print_grad(self.model.named_parameters())
# evaluation on validation set
if self.eval:
val_acc = self.testing.run_val(epoch)
else:
val_acc = 0.0
# save env score
env_score_memo = {}
if self.algorithm_opt['always_update'] or (epoch in self.algorithm_opt['update_milestones']):
# update env mask
self.all_ind = torch.cat(all_ind, dim=0)
self.all_lab = torch.cat(all_lab, dim=0)
self.all_prb = torch.cat(all_prb, dim=0)
self.all_lgt = torch.cat(all_lgt, dim=0)
# save env_score
env_score_memo['label_{}'.format(epoch)] = self.all_lab.tolist()
env_score_memo['prob_{}'.format(epoch)] = self.all_prb.tolist()
env_score_memo['idx_{}'.format(epoch)] = self.all_ind.tolist()
if self.algorithm_opt['env_type'] == 'correctness':
self.update_env_by_correct(env1_loader, env2_loader, total_image)
elif self.algorithm_opt['env_type'] in ('inter', 'intra', 'inter_intra'):
self.update_env_by_score(env1_loader, env2_loader, total_image)
elif self.algorithm_opt['env_type'] == 'simple_aug':
self.update_env_by_uniform(env1_loader, env2_loader, total_image)
else:
raise ValueError('Wrong Env Type')
# checkpoint
self.checkpoint.save(self.model, self.classifier, epoch, self.logger, acc=val_acc, add_dict=env_score_memo)
# update scheduler
self.scheduler.step()
# save best model path
self.checkpoint.save_best_model_path(self.logger)
def update_env_by_uniform(self, env1_loader, env2_loader, total_image):
# simple sample dataset 2 times at each epoch
all_scores = torch.zeros(total_image).fill_(1.0)
self.logger.info('Env1 and Env2 have size {} and {}'.format(all_scores.sum().item(), all_scores.sum().item()))
env1_loader.sampler.set_parameter(all_scores)
env2_loader.sampler.set_parameter(all_scores)
def update_env_by_correct(self, env1_loader, env2_loader, total_image):
# seperate environments by correct/wrong prediction
correct_index = self.all_ind[self.all_lgt.max(1)[1] == self.all_lab].cpu().tolist()
env1_score = torch.zeros(total_image)
for idx in correct_index:
env1_score[idx] = 1.0
env2_score = 1.0 - env1_score
self.logger.info('Env1 and Env2 have size {} and {}'.format(env1_score.sum().item(), env2_score.sum().item()))
env1_loader.sampler.set_parameter(env1_score)
env2_loader.sampler.set_parameter(env2_score)
def update_env_by_score(self, env1_loader, env2_loader, total_image):
# seperate environments by inter-score + intra-score
all_ind, all_lab, all_prb = self.all_ind.tolist(), self.all_lab.tolist(), self.all_prb.tolist()
all_cat = list(set(all_lab))
all_cat.sort()
cat_socres = {cat:{} for cat in all_cat}
all_scores = {}
for ind, lab, prb in zip(all_ind, all_lab, all_prb):
cat_socres[lab][ind] = prb
all_scores[ind] = prb
# baseline distribution
env1_score = torch.zeros(total_image).fill_(1.0)
env2_score = torch.zeros(total_image).fill_(1.0)
# inverse distribution
if self.algorithm_opt['env_type'] in ('inter', 'inter_intra'):
inter_weight = self.generate_inter_weight(all_scores, total_image, tg_scale=self.algorithm_opt['sample_scale'])
env2_score = env2_score * inter_weight
if self.algorithm_opt['env_type'] in ('intra', 'inter_intra'):
intra_weight = self.generate_intra_weight(cat_socres, total_image, tg_scale=self.algorithm_opt['sample_scale'])
env2_score = env2_score * intra_weight
env1_loader.sampler.set_parameter(env1_score)
env2_loader.sampler.set_parameter(env2_score)
def generate_inter_weight(self, all_scores, total_image, tg_scale=4.0):
# normalize
inter_weight = torch.zeros(total_image).fill_(1.0)
for ind, prb in all_scores.items():
inter_weight[ind] = prb
inter_weight = inter_weight - inter_weight.min()
inter_weight = inter_weight / (inter_weight.max() + 1e-9)
# use Pareto principle to determine the scale parameter
inter_weight = (1.0 - inter_weight).abs() + 1e-5
head_mean = torch.topk(inter_weight, k=int(total_image * 0.8), largest=False)[0].mean().item()
tail_mean = torch.topk(inter_weight, k=int(total_image * 0.2), largest=True )[0].mean().item()
scale = tail_mean / head_mean + 1e-5
exp_scale = torch.FloatTensor([tg_scale]).log() / torch.FloatTensor([scale]).log()
exp_scale = exp_scale.clamp(min=1, max=10)
self.logger.info('Inter Score Original Head (80) Tail (20) Scale is {}'.format(scale))
self.logger.info('Inter Score Target Head (80) Tail (20) Scale is {}'.format(tg_scale))
self.logger.info('Inter Score Exp Scale is {}'.format(exp_scale.item()))
inter_weight = inter_weight ** exp_scale
inter_weight = inter_weight + 1e-12
inter_weight = inter_weight / inter_weight.sum()
return inter_weight
def generate_intra_weight(self, cat_socres, total_image, tg_scale=4.0):
# normalize
intra_weight = torch.zeros(total_image).fill_(0.0)
for cat, cat_items in cat_socres.items():
cat_size = len(cat_items)
if cat_size < 5:
for ind in list(cat_items.keys()):
intra_weight[ind] = 1.0 / max(cat_size, 1.0)
continue
cat_inds = list(cat_items.keys())
cat_scores = torch.FloatTensor([cat_items[ind] for ind in cat_inds])
cat_scores = cat_scores - cat_scores.min()
cat_scores = cat_scores / (cat_scores.max() + 1e-9)
# use Pareto principle to determine the scale parameter
cat_scores = (1.0 - cat_scores).abs() + 1e-5
head_mean = torch.topk(cat_scores, k=int(cat_size * 0.8), largest=False)[0].mean().item()
tail_mean = torch.topk(cat_scores, k=int(cat_size * 0.2), largest=True )[0].mean().item()
scale = tail_mean / head_mean + 1e-5
exp_scale = torch.FloatTensor([tg_scale]).log() / torch.FloatTensor([scale]).log()
exp_scale = exp_scale.clamp(min=1, max=10)
if int(cat) == 0:
self.logger.info('Intra Score at Cat-{} Original Head (80) Tail (20) Scale is {}'.format(cat, scale))
self.logger.info('Intra Score at Cat-{} Target Head (80) Tail (20) Scale is {}'.format(cat, tg_scale))
self.logger.info('Intra Score at Cat-{} Exp Scale is {}'.format(cat, exp_scale.item()))
cat_scores = cat_scores ** exp_scale
cat_scores = cat_scores + 1e-12
cat_scores = cat_scores / cat_scores.sum()
for ind, score in zip(cat_inds, cat_scores.tolist()):
intra_weight[ind] = score
self.logger.info('Intra Total Score {}, which should be equal to NUM_CLASS'.format(intra_weight.sum().item()))
return intra_weight