-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathERP_torch.py
132 lines (109 loc) · 3.91 KB
/
ERP_torch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data as data_utils
import numpy as np
import os
os.environ['KMP_DUPLICATE_LIB_OK']='True'
# mne imports
import mne
from mne import io
from mne.datasets import sample
# tools for plotting confusion matrices
from matplotlib import pyplot as plt
# EEGNet-specific imports
from tensorflow.keras.callbacks import ModelCheckpoint
from EEGModel_torch import model
data_path = sample.data_path()
data = []
# Set parameters and read data
raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif'
event_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif'
tmin, tmax = -0., 1
event_id = dict(aud_l=1, aud_r=2, vis_l=3, vis_r=4)
raw = io.Raw(raw_fname, preload=True, verbose=False)
raw.filter(2, None, method='iir') # replace baselining with high-pass
events = mne.read_events(event_fname)
raw.info['bads'] = ['MEG 2443'] # set bad channels
picks = mne.pick_types(raw.info, meg=False, eeg=True, stim=False, eog=False,
exclude='bads')
epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=False,
picks=picks, baseline=None, preload=True, verbose=False)
labels = epochs.events[:, -1]
# extract raw data. scale by 1000 due to scaling sensitivity in deep learning
X = epochs.get_data()*1000 # format is in (trials, channels, samples)
y = labels
kernels, chans, samples = 1, 60, 151
# take 50/25/25 percent of the data to train/validate/test
X_train = X[0:144, ]
Y_train = y[0:144]
X_validate = X[144:216, ]
Y_validate = y[144:216]
X_test = X[216:, ]
Y_test = y[216:]
# Numpy array to Tensor
X_train = torch.Tensor(X_train)
Y_train = torch.Tensor(Y_train)
Y_train = F.one_hot(Y_train.to(torch.int64)-1, 4)
X_validate = torch.Tensor(X_validate)
Y_validate = torch.Tensor(Y_validate)
Y_validate = F.one_hot(Y_validate.to(torch.int64)-1, 4)
X_test = torch.Tensor(X_test)
Y_test = torch.Tensor(Y_test)
Y_test = F.one_hot(Y_test.to(torch.int64)-1, 4)
print("xtrian shape:",X_train.shape)
X_train = X_train.reshape(X_train.shape[0], kernels, chans, samples)
print("xtrian shape:",X_train.shape)
X_validate = X_validate.reshape(X_validate.shape[0], kernels, chans, samples)
X_test = X_test.reshape(X_test.shape[0], kernels, chans, samples)
print('X_train shape:', X_train.shape)
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')
trn = data_utils.TensorDataset(X_train, Y_train)
trn_loader = data_utils.DataLoader(trn, batch_size=16, shuffle=True)
val = data_utils.TensorDataset(X_validate, Y_validate)
val_loader = data_utils.DataLoader(val, batch_size=16, shuffle=True)
test = data_utils.TensorDataset(X_test, Y_test)
test_loader = data_utils.DataLoader(test, batch_size=16, shuffle=True)
#################### model training ####################
criterion = nn.CrossEntropyLoss
learning_rate = 0.001
print(model.parameters)
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
num_epochs = 10
trn_loss = []
val_loss = []
trn_acc = []
#%%
avg_loss = 0
total_batch = len(trn_loader)
loss_test = []
for epoch in range(num_epochs): # epoch
avg_loss = 0
acc = 0
for i,data in enumerate(trn_loader,0): # iteration
X,y = data
optimizer.zero_grad()
pred = F.softmax(model(X), dim=1)
#accuracy
prediction = torch.max(pred,1)[1]
y = torch.max(y,1)[1]
acc += (prediction == y).sum()
accuracy = acc / (len(y)*total_batch)
#print(F.softmax(pred))
loss = criterion()(pred, y)
#print("loss: ",loss)
loss.backward()
optimizer.step()
avg_loss += loss / total_batch
print('[Epoch:{}] loss={}, acc={}'.format(epoch+1,avg_loss,accuracy))
trn_loss.append(avg_loss.item())
trn_acc.append(accuracy.item())
print("finish training!")
plt.plot(trn_loss)
plt.plot(trn_acc)
plt.xlabel('epoch')
plt.title('Training')
plt.legend(['loss','accuracy'])
plt.show()