-
Notifications
You must be signed in to change notification settings - Fork 0
/
EEGexample.py
163 lines (128 loc) · 6.26 KB
/
EEGexample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import numpy as np
# mne imports
import mne
from mne import io
from mne.datasets import sample
# EEGNet-specific imports
from EEGModel import EEGNet
from tensorflow.keras import utils as np_utils
from tensorflow.keras.callbacks import ModelCheckpoint
from tensorflow.keras import backend as K
# from pyriemann.utils.viz import plot_confusion_matrix
from sklearn.pipeline import make_pipeline
from sklearn.linear_model import LogisticRegression
# tools for plotting confusion matrices
from matplotlib import pyplot as plt
# while the default tensorflow ordering is 'channels_last' we set it here
# to be explicit in case if the user has changed the default ordering
K.set_image_data_format('channels_last')
##################### Process, filter and epoch the data ######################
data_path = sample.data_path()
data = []
# Set parameters and read data
raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif'
event_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif'
tmin, tmax = -0., 1
event_id = dict(aud_l=1, aud_r=2, vis_l=3, vis_r=4)
# Setup for reading the raw data
raw = io.Raw(raw_fname, preload=True, verbose=False)
raw.filter(2, None, method='iir') # replace baselining with high-pass
events = mne.read_events(event_fname)
raw.info['bads'] = ['MEG 2443'] # set bad channels
picks = mne.pick_types(raw.info, meg=False, eeg=True, stim=False, eog=False,
exclude='bads')
# Read epochs
epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=False,
picks=picks, baseline=None, preload=True, verbose=False)
labels = epochs.events[:, -1]
# extract raw data. scale by 1000 due to scaling sensitivity in deep learning
X = epochs.get_data()*1000 # format is in (trials, channels, samples)
y = labels
kernels, chans, samples = 1, 60, 151
# take 50/25/25 percent of the data to train/validate/test
X_train = X[0:144,]
Y_train = y[0:144]
X_validate = X[144:216,]
Y_validate = y[144:216]
X_test = X[216:,]
Y_test = y[216:]
############################# EEGNet portion ##################################
# convert labels to one-hot encodings.
Y_train = np_utils.to_categorical(Y_train-1)
Y_validate = np_utils.to_categorical(Y_validate-1)
Y_test = np_utils.to_categorical(Y_test-1)
# convert data to NHWC (trials, channels, samples, kernels) format. Data
# contains 60 channels and 151 time-points. Set the number of kernels to 1.
print("xtrian shape:",X_train.shape)
X_train = X_train.reshape(X_train.shape[0], chans, samples, kernels)
print("xtrian shape:",X_train.shape)
X_validate = X_validate.reshape(X_validate.shape[0], chans, samples, kernels)
X_test = X_test.reshape(X_test.shape[0], chans, samples, kernels)
print('X_train shape:', X_train.shape)
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')
# configure the EEGNet-8,2,16 model with kernel length of 32 samples (other
# model configurations may do better, but this is a good starting point)
model = EEGNet(nb_classes = 4, Chans = chans, Samples = samples,
dropoutRate = 0.5, kernLength = 32, F1 = 8, D = 2, F2 = 16,
dropoutType = 'Dropout')
# compile the model and set the optimizers
model.compile(loss='categorical_crossentropy', optimizer='adam',
metrics = ['accuracy'])
# count number of parameters in the model
# numParams = model.count_params()
# set a valid path for your system to record model checkpoints
checkpointer = ModelCheckpoint(filepath='/tmp/checkpoint.h5', verbose=1,
save_best_only=True)
###############################################################################
# if the classification task was imbalanced (significantly more trials in one
# class versus the others) you can assign a weight to each class during
# optimization to balance it out. This data is approximately balanced so we
# don't need to do this, but is shown here for illustration/completeness.
###############################################################################
# the syntax is {class_1:weight_1, class_2:weight_2,...}. Here just setting
# the weights all to be 1
class_weights = {0:1, 1:1, 2:1, 3:1}
################################################################################
# fit the model. Due to very small sample sizes this can get
# pretty noisy run-to-run, but most runs should be comparable to xDAWN +
# Riemannian geometry classification (below)
################################################################################
fittedModel = model.fit(X_train, Y_train, batch_size = 16, epochs = 10,
verbose = 2, validation_data=(X_validate, Y_validate),
callbacks=[checkpointer], class_weight = class_weights)
# load optimal weights
# model.load_weights('/tmp/checkpoint.h5')
###############################################################################
# can alternatively used the weights provided in the repo. If so it should get
# you 93% accuracy. Change the WEIGHTS_PATH variable to wherever it is on your
# system.
###############################################################################
# WEIGHTS_PATH = /path/to/EEGNet-8-2-weights.h5
# model.load_weights(WEIGHTS_PATH)
###############################################################################
# make prediction on test set.
###############################################################################
probs = model.predict(X_test)
preds = probs.argmax(axis = -1)
acc = np.mean(preds == Y_test.argmax(axis=-1))
data.append(acc)
print("Classification accuracy: %f " % (acc))
# plot the confusion matrices for both classifiers
names = ['audio left', 'audio right', 'vis left', 'vis right']
# plot the accuracy and loss graph
plt.plot(fittedModel.history['accuracy'])
plt.plot(fittedModel.history['val_accuracy'])
plt.plot(fittedModel.history['loss'])
plt.plot(fittedModel.history['val_loss'])
plt.title('acc & loss')
plt.xlabel('epoch')
plt.legend(['acc', 'val_acc','loss','val_loss'], loc='upper right')
plt.show()
plt.bar(np.arange(len(data)), data)
plt.xticks(np.arange(len(data)),np.arange(1,len(data)+1))
plt.title('epoch accuracy')
plt.xlabel('epoch')
plt.ylabel('accuracy')
# plt.figure(0)
# plot_confusion_matrix(preds, Y_test.argmax(axis = -1), names, title = 'EEGNet-8,2')