forked from dbolya/yolact
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
1041 lines (835 loc) · 43.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from data import *
from utils.augmentations import SSDAugmentation, BaseTransform
from utils.functions import MovingAverage, SavePath
from utils.logger import Log
from utils import timer
from layers.modules import MultiBoxLoss
from yolact import Yolact
import os
import sys
import time
import math, random
from pathlib import Path
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torch.nn.init as init
import torch.utils.data as data
import numpy as np
import argparse
import datetime
import wandb
# Oof
import eval as eval_script
def str2bool(v):
return v.lower() in ("yes", "true", "t", "1")
parser = argparse.ArgumentParser(
description='Yolact Training Script')
parser.add_argument('--batch_size', default=8, type=int,
help='Batch size for training')
parser.add_argument('--resume', default=None, type=str,
help='Checkpoint state_dict file to resume training from. If this is "interrupt"'\
', the model will resume training from the interrupt file.')
parser.add_argument('--start_iter', default=-1, type=int,
help='Resume training at this iter. If this is -1, the iteration will be'\
'determined from the file name.')
parser.add_argument('--num_workers', default=4, type=int,
help='Number of workers used in dataloading')
parser.add_argument('--cuda', default=True, type=str2bool,
help='Use CUDA to train model')
parser.add_argument('--lr', '--learning_rate', default=None, type=float,
help='Initial learning rate. Leave as None to read this from the config.')
parser.add_argument('--momentum', default=None, type=float,
help='Momentum for SGD. Leave as None to read this from the config.')
parser.add_argument('--decay', '--weight_decay', default=None, type=float,
help='Weight decay for SGD. Leave as None to read this from the config.')
parser.add_argument('--gamma', default=None, type=float,
help='For each lr step, what to multiply the lr by. Leave as None to read this from the config.')
parser.add_argument('--save_folder', default='weights/',
help='Directory for saving checkpoint models.')
parser.add_argument('--log_folder', default='logs/',
help='Directory for saving logs.')
parser.add_argument('--config', default=None,
help='The config object to use.')
parser.add_argument('--save_interval', default=10000, type=int,
help='The number of iterations between saving the model.')
parser.add_argument('--validation_size', default=5000, type=int,
help='The number of images to use for validation.')
parser.add_argument('--validation_epoch', default=1, type=int,
help='Output validation information every n iterations. If -1, do no validation.')
parser.add_argument('--keep_latest', dest='keep_latest', action='store_true',
help='Only keep the latest checkpoint instead of each one.')
parser.add_argument('--keep_latest_interval', default=100000, type=int,
help='When --keep_latest is on, don\'t delete the latest file at these intervals. This should be a multiple of save_interval or 0.')
parser.add_argument('--dataset', default=None, type=str,
help='If specified, override the dataset specified in the config with this one (example: coco2017_dataset).')
parser.add_argument('--no_log', dest='log', action='store_false',
help='Don\'t log per iteration information into log_folder.')
parser.add_argument('--log_gpu', dest='log_gpu', action='store_true',
help='Include GPU information in the logs. Nvidia-smi tends to be slow, so set this with caution.')
parser.add_argument('--no_interrupt', dest='interrupt', action='store_false',
help='Don\'t save an interrupt when KeyboardInterrupt is caught.')
parser.add_argument('--batch_alloc', default=None, type=str,
help='If using multiple GPUS, you can set this to be a comma separated list detailing which GPUs should get what local batch size (It should add up to your total batch size).')
parser.add_argument('--no_autoscale', dest='autoscale', action='store_false',
help='YOLACT will automatically scale the lr and the number of iterations depending on the batch size. Set this if you want to disable that.')
parser.add_argument('--refinement_mode', default=False, required=False, type=bool, help='for the refinement training of real data on a pretrained pbr model')
parser.add_argument('--refinement_iterations', default=1000, required=False, type=int, help='iterations for refinement')
parser.add_argument('--start_epoch', default=0, required=False, type=int)
parser.set_defaults(keep_latest=False, log=True, log_gpu=False, interrupt=True, autoscale=True)
args = parser.parse_args()
if args.config is not None:
set_cfg(args.config)
if args.dataset is not None:
set_dataset(args.dataset)
if args.autoscale and args.batch_size != 8:
factor = args.batch_size / 8
if __name__ == '__main__':
print('Scaling parameters by %.2f to account for a batch size of %d.' % (factor, args.batch_size))
cfg.lr *= factor
cfg.max_iter //= factor
cfg.lr_steps = [x // factor for x in cfg.lr_steps]
# Update training parameters from the config if necessary
def replace(name):
if getattr(args, name) == None: setattr(args, name, getattr(cfg, name))
replace('lr')
replace('decay')
replace('gamma')
replace('momentum')
# This is managed by set_lr
cur_lr = args.lr
if torch.cuda.device_count() == 0:
print('No GPUs detected. Exiting...')
exit(-1)
if args.batch_size // torch.cuda.device_count() < 6:
if __name__ == '__main__':
print('Per-GPU batch size is less than the recommended limit for batch norm. Disabling batch norm.')
cfg.freeze_bn = True
loss_types = ['B', 'C', 'M', 'P', 'D', 'E', 'S', 'I']
if torch.cuda.is_available():
if args.cuda:
torch.set_default_tensor_type('torch.cuda.FloatTensor')
if not args.cuda:
print("WARNING: It looks like you have a CUDA device, but aren't " +
"using CUDA.\nRun with --cuda for optimal training speed.")
torch.set_default_tensor_type('torch.FloatTensor')
else:
torch.set_default_tensor_type('torch.FloatTensor')
class NetLoss(nn.Module):
"""
A wrapper for running the network and computing the loss
This is so we can more efficiently use DataParallel.
"""
def __init__(self, net:Yolact, criterion:MultiBoxLoss):
super().__init__()
self.net = net
self.criterion = criterion
def forward(self, images, targets, masks, num_crowds):
preds = self.net(images)
losses = self.criterion(self.net, preds, targets, masks, num_crowds)
return losses
class CustomDataParallel(nn.DataParallel):
"""
This is a custom version of DataParallel that works better with our training data.
It should also be faster than the general case.
"""
def scatter(self, inputs, kwargs, device_ids):
# More like scatter and data prep at the same time. The point is we prep the data in such a way
# that no scatter is necessary, and there's no need to shuffle stuff around different GPUs.
devices = ['cuda:' + str(x) for x in device_ids]
splits = prepare_data(inputs[0], devices, allocation=args.batch_alloc)
return [[split[device_idx] for split in splits] for device_idx in range(len(devices))], \
[kwargs] * len(devices)
def gather(self, outputs, output_device):
out = {}
for k in outputs[0]:
out[k] = torch.stack([output[k].to(output_device) for output in outputs])
return out
def refinement_training():
DEBUG = False
print("entering refinement mode...")
if not os.path.exists(args.save_folder):
os.mkdir(args.save_folder)
dataset = COCODetection(image_path=cfg.dataset.train_images,
info_file=cfg.dataset.train_info,
transform=SSDAugmentation(MEANS))
real_dataset = COCODetection(image_path = cfg.dataset.train_images,
info_file=cfg.dataset.train_info,
transform=SSDAugmentation(MEANS))
if args.validation_epoch > 0:
setup_eval()
val_dataset = COCODetection(image_path=cfg.dataset.valid_images,
info_file=cfg.dataset.valid_info,
transform=BaseTransform(MEANS))
# Parallel wraps the underlying module, but when saving and loading we don't want that
yolact_net = Yolact()
net = yolact_net
net.train()
if args.log:
log = Log(cfg.name, args.log_folder, dict(args._get_kwargs()),
overwrite=(args.resume is None), log_gpu_stats=args.log_gpu)
# I don't use the timer during training (I use a different timing method).
# Apparently there's a race condition with multiple GPUs, so disable it just to be safe.
timer.disable_all()
# Both of these can set args.resume to None, so do them before the check
if args.resume == 'interrupt':
args.resume = SavePath.get_interrupt(args.save_folder)
elif args.resume == 'latest':
args.resume = SavePath.get_latest(args.save_folder, cfg.name)
if args.resume is not None:
print('Resuming training, loading {}...'.format(args.resume))
yolact_net.load_weights(args.resume)
if args.start_iter == -1:
args.start_iter = SavePath.from_str(args.resume).iteration
else:
print('Initializing weights...')
yolact_net.init_weights(backbone_path=args.save_folder + cfg.backbone.path)
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=args.momentum,
weight_decay=args.decay)
criterion = MultiBoxLoss(num_classes=cfg.num_classes,
pos_threshold=cfg.positive_iou_threshold,
neg_threshold=cfg.negative_iou_threshold,
negpos_ratio=cfg.ohem_negpos_ratio)
if args.batch_alloc is not None:
args.batch_alloc = [int(x) for x in args.batch_alloc.split(',')]
if sum(args.batch_alloc) != args.batch_size:
print('Error: Batch allocation (%s) does not sum to batch size (%s).' % (args.batch_alloc, args.batch_size))
exit(-1)
net = CustomDataParallel(NetLoss(net, criterion))
if args.cuda:
net = net.cuda()
# Initialize everything
if not cfg.freeze_bn: yolact_net.freeze_bn() # Freeze bn so we don't kill our means
yolact_net(torch.zeros(1, 3, cfg.max_size, cfg.max_size).cuda())
if not cfg.freeze_bn: yolact_net.freeze_bn(True)
# loss counters
loc_loss = 0
conf_loss = 0
iteration = max(args.start_iter, 0)
last_time = time.time()
#print("Number of iterations: " + str(iteration))
epoch_size = len(real_dataset) // args.batch_size
num_epochs = math.ceil(cfg.max_iter / epoch_size)
#print("size per epoch: " + str(epoch_size))
#print("number of epochs: " + str(num_epochs))
# Which learning rate adjustment step are we on? lr' = lr * gamma ^ step_index
step_index = 0
pbr_data_loader = data.DataLoader(dataset, args.batch_size,
num_workers=args.num_workers,
shuffle=True, collate_fn=detection_collate,
pin_memory=True,
generator=torch.Generator(device='cuda'))
pbr_iterator = iter(pbr_data_loader)
real_data_loader = data.DataLoader(real_dataset, args.batch_size,
num_workers=args.num_workers,
shuffle=True, collate_fn=detection_collate,
pin_memory=True,
generator=torch.Generator(device='cuda'))
real_iterator = iter(real_data_loader)
# need a second data loader for the validation set
# note that the val_dataset uses BaseTransform as transformation, not SSDAugmentation like during training
# this is because during training the SSDAugmentation also randomly flips,etc... images for robustness
val_data_loader = data.DataLoader(val_dataset, args.batch_size,
num_workers=args.num_workers,
shuffle=False, collate_fn=detection_collate,
pin_memory=True,
generator=torch.Generator(device='cuda'))
save_path = lambda epoch, iteration: SavePath(cfg.name, epoch, iteration).get_path(root=args.save_folder)
time_avg = MovingAverage()
global loss_types # Forms the print order
loss_avgs = { k: MovingAverage(100) for k in loss_types }
#create a dict for the val_loss
#val_loss_avgs = { k: MovingAverage(100) for k in loss_types}
print('Begin training!')
print()
# try-except so you can use ctrl+c to save early and stop training
pbr_samples = 0
real_samples = 0
try:
#for epoch in range(num_epochs):
epoch=args.start_epoch
while(True):
# Resume from start_iter
#if (epoch+1)*epoch_size < iteration:
# continue
#print("DEBUGGING VAL LOSS")
#compute_validation_loss(net, val_data_loader, log, epoch)
#for datum in real_data_loader:
# if False:
if np.random.randint(0, high=100) < (100 * cfg.ratio_pbr_to_real):
pbr_samples += 1
print("Sampling PBR")
try:
datum = next(pbr_iterator)
except StopIteration: # incase the dataloader is exhausted
print("PBR iterator is exhausted")
pbr_iterator = iter(pbr_data_loader)
datum = next(pbr_iterator)
else:
real_samples += 1
print("Sampling Real")
try:
datum = next(real_iterator)
except StopIteration: #again incase the dataloader is exhausted
print("Real iterator is exhausted")
real_iterator = iter(real_data_loader)
datum = next(real_data_loader)
# Stop if we've reached an epoch if we're resuming from start_iter
#if iteration == (epoch+1)*epoch_size:
# break
# Stop at the configured number of iterations even if mid-epoch
if iteration == cfg.max_iter:
break
#for augmentation debug
#exit()
# Change a config setting if we've reached the specified iteration
changed = False
for change in cfg.delayed_settings:
if iteration >= change[0]:
changed = True
cfg.replace(change[1])
# Reset the loss averages because things might have changed
for avg in loss_avgs:
avg.reset()
# If a config setting was changed, remove it from the list so we don't keep checking
if changed:
cfg.delayed_settings = [x for x in cfg.delayed_settings if x[0] > iteration]
# Warm up by linearly interpolating the learning rate from some smaller value
if cfg.lr_warmup_until > 0 and iteration <= cfg.lr_warmup_until:
set_lr(optimizer, (args.lr - cfg.lr_warmup_init) * (iteration / cfg.lr_warmup_until) + cfg.lr_warmup_init)
# Adjust the learning rate at the given iterations, but also if we resume from past that iteration
while step_index < len(cfg.lr_steps) and iteration >= cfg.lr_steps[step_index]:
step_index += 1
set_lr(optimizer, args.lr * (args.gamma ** step_index))
if (iteration % 100 == 0):
#print("Iteration=" + str(iteration) + " | Learning-rates check:")
for i,param_group in enumerate(optimizer.param_groups):
wandb.log({'lr-param_group_' + str(i) : param_group['lr']}, step=iteration)
print(param_group['lr'])
#print("Done printing learning rates!")
# Zero the grad to get ready to compute gradients
optimizer.zero_grad()
# Forward Pass + Compute loss at the same time (see CustomDataParallel and NetLoss)
try:
losses = net(datum)
except IndexError as e:
print("An index error occured!")
#print("Datum:" + str(datum))
loss.backward()
continue
except Exception as e:
print(f"An error occurred: {e}")
#print("Datum:" + str(datum))
if DEBUG:
exit()
loss.backward()
continue
losses = { k: (v).mean() for k,v in losses.items() } # Mean here because Dataparallel
loss = sum([losses[k] for k in losses])
#avg loss for wandb?
#avg_loss += loss.item()
# no_inf_mean removes some components from the loss, so make sure to backward through all of it
# all_loss = sum([v.mean() for v in losses.values()])
# Backprop
loss.backward() # Do this to free up vram even if loss is not finite
if torch.isfinite(loss).item():
optimizer.step()
# Add the loss to the moving average for bookkeeping
for k in losses:
loss_avgs[k].add(losses[k].item())
cur_time = time.time()
elapsed = cur_time - last_time
last_time = cur_time
# Exclude graph setup from the timing information
if iteration != args.start_iter:
time_avg.add(elapsed)
if iteration % 10 == 0:
eta_str = str(datetime.timedelta(seconds=(cfg.max_iter-iteration) * time_avg.get_avg())).split('.')[0]
total = sum([loss_avgs[k].get_avg() for k in losses])
loss_labels = sum([[k, loss_avgs[k].get_avg()] for k in loss_types if k in losses], [])
if WANDB:
loss_dict = {}
for k in losses:
loss_dict['moving_avg_loss_' + k] = round(loss_avgs[k].get_avg(),5)
wandb.log(loss_dict, step=iteration)
print(f"Pbr-Samples: {pbr_samples} | Real-Samples: {real_samples}")
print(('Epoch: %3d | Iteration %7d ||' + (' %s: %.3f |' * len(losses)) + ' T: %.3f || ETA: %s || timer: %.3f')
% tuple([epoch,iteration] + loss_labels + [total, eta_str, elapsed]), flush=True)
if args.log:
precision = 5
loss_info = {k: round(losses[k].item(), precision) for k in losses}
loss_info['T'] = round(loss.item(), precision)
if WANDB:
loss_dict = {}
loss_dict = {'loss_'+k: round(losses[k].item(),precision) for k in losses}
loss_dict['loss_T'] = round(loss.item(), precision)
wandb.log(loss_dict, step=iteration)
if args.log_gpu:
log.log_gpu_stats = (iteration % 10 == 0) # nvidia-smi is sloooow
log.log('train', loss=loss_info, epoch=epoch, iter=iteration,
lr=round(cur_lr, 10), elapsed=elapsed)
log.log_gpu_stats = args.log_gpu
#also compute validation loss every 3000 iterations, NOT NECESSARY FOR REFINEMENT
if iteration > 0 and iteration % 3000 == 0:
compute_validation_loss(net, val_data_loader, log, epoch, iteration)
iteration += 1
if iteration % args.save_interval == 0 and iteration != args.start_iter:
if args.keep_latest:
latest = SavePath.get_latest(args.save_folder, cfg.name)
print('Saving state, iter:', iteration)
yolact_net.save_weights(save_path(epoch, iteration))
if args.keep_latest and latest is not None:
if args.keep_latest_interval <= 0 or iteration % args.keep_latest_interval != args.save_interval:
print('Deleting old save...')
os.remove(latest)
#if (iteration % 500) == 0:
# print("Sampling ratio so far: Pbr=" + str(pbr_samples) + " | Real=" + str(real_samples))
# This is done per epoch
#if args.validation_epoch > 0:
# if epoch % args.validation_epoch == 0 and epoch > 0:
# compute_validation_map(epoch, iteration, yolact_net, val_dataset, log if args.log else None)
print("Training is done! Now computing validation mAP a final time...")
# Compute validation mAP after training is finished
compute_validation_map(epoch, iteration, yolact_net, val_dataset, log if args.log else None)
except KeyboardInterrupt:
if args.interrupt:
print('Stopping early. Saving network...')
# Delete previous copy of the interrupted network so we don't spam the weights folder
SavePath.remove_interrupt(args.save_folder)
yolact_net.save_weights(save_path(epoch, repr(iteration) + '_interrupt'))
exit()
print("Sampled Pbr: " + str(pbr_samples))
print("Samples Real: " + str(real_samples))
yolact_net.save_weights(save_path(epoch, iteration))
return
def train():
if not os.path.exists(args.save_folder):
os.mkdir(args.save_folder)
dataset = COCODetection(image_path=cfg.dataset.train_images,
info_file=cfg.dataset.train_info,
transform=SSDAugmentation(MEANS))
if args.validation_epoch > 0:
setup_eval()
val_dataset = COCODetection(image_path=cfg.dataset.valid_images,
info_file=cfg.dataset.valid_info,
transform=BaseTransform(MEANS))
# Parallel wraps the underlying module, but when saving and loading we don't want that
yolact_net = Yolact()
net = yolact_net
net.train()
if args.log:
log = Log(cfg.name, args.log_folder, dict(args._get_kwargs()),
overwrite=(args.resume is None), log_gpu_stats=args.log_gpu)
# I don't use the timer during training (I use a different timing method).
# Apparently there's a race condition with multiple GPUs, so disable it just to be safe.
timer.disable_all()
# Both of these can set args.resume to None, so do them before the check
if args.resume == 'interrupt':
args.resume = SavePath.get_interrupt(args.save_folder)
elif args.resume == 'latest':
args.resume = SavePath.get_latest(args.save_folder, cfg.name)
if args.resume is not None:
print('Resuming training, loading {}...'.format(args.resume))
yolact_net.load_weights(args.resume)
if args.start_iter == -1:
args.start_iter = SavePath.from_str(args.resume).iteration
else:
print('Initializing weights...')
yolact_net.init_weights(backbone_path=args.save_folder + cfg.backbone.path)
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=args.momentum,
weight_decay=args.decay)
criterion = MultiBoxLoss(num_classes=cfg.num_classes,
pos_threshold=cfg.positive_iou_threshold,
neg_threshold=cfg.negative_iou_threshold,
negpos_ratio=cfg.ohem_negpos_ratio)
if args.batch_alloc is not None:
args.batch_alloc = [int(x) for x in args.batch_alloc.split(',')]
if sum(args.batch_alloc) != args.batch_size:
print('Error: Batch allocation (%s) does not sum to batch size (%s).' % (args.batch_alloc, args.batch_size))
exit(-1)
net = CustomDataParallel(NetLoss(net, criterion))
if args.cuda:
net = net.cuda()
# Initialize everything
if not cfg.freeze_bn: yolact_net.freeze_bn() # Freeze bn so we don't kill our means
yolact_net(torch.zeros(1, 3, cfg.max_size, cfg.max_size).cuda())
if not cfg.freeze_bn: yolact_net.freeze_bn(True)
# loss counters
loc_loss = 0
conf_loss = 0
iteration = max(args.start_iter, 0)
last_time = time.time()
epoch_size = len(dataset) // args.batch_size
num_epochs = math.ceil(cfg.max_iter / epoch_size)
print("size per epoch: " + str(epoch_size))
print("number of epochs: " + str(num_epochs))
# Which learning rate adjustment step are we on? lr' = lr * gamma ^ step_index
step_index = 0
data_loader = data.DataLoader(dataset, args.batch_size,
num_workers=args.num_workers,
shuffle=True, collate_fn=detection_collate,
pin_memory=True,
generator=torch.Generator(device='cuda'))
# need a second data loader for the validation set
# note that the val_dataset uses BaseTransform as transformation, not SSDAugmentation like during training
# this is because during training the SSDAugmentation also randomly flips,etc... images for robustness
val_data_loader = data.DataLoader(val_dataset, args.batch_size,
num_workers=args.num_workers,
shuffle=False, collate_fn=detection_collate,
pin_memory=True,
generator=torch.Generator(device='cuda'))
save_path = lambda epoch, iteration: SavePath(cfg.name, epoch, iteration).get_path(root=args.save_folder)
time_avg = MovingAverage()
global loss_types # Forms the print order
loss_avgs = { k: MovingAverage(100) for k in loss_types }
#create a dict for the val_loss
#val_loss_avgs = { k: MovingAverage(100) for k in loss_types}
print('Begin training!')
print()
if args.refinement_mode:
refinement_training()
# try-except so you can use ctrl+c to save early and stop training
try:
for epoch in range(num_epochs):
# Resume from start_iter
if (epoch+1)*epoch_size < iteration:
continue
#print("DEBUGGING VAL LOSS")
#compute_validation_loss(net, val_data_loader, log, epoch)
for datum in data_loader:
# Stop if we've reached an epoch if we're resuming from start_iter
if iteration == (epoch+1)*epoch_size:
break
# Stop at the configured number of iterations even if mid-epoch
if iteration == cfg.max_iter:
break
#for augmentation debug
#exit()
# Change a config setting if we've reached the specified iteration
changed = False
for change in cfg.delayed_settings:
if iteration >= change[0]:
changed = True
cfg.replace(change[1])
# Reset the loss averages because things might have changed
for avg in loss_avgs:
avg.reset()
# If a config setting was changed, remove it from the list so we don't keep checking
if changed:
cfg.delayed_settings = [x for x in cfg.delayed_settings if x[0] > iteration]
# Warm up by linearly interpolating the learning rate from some smaller value
if cfg.lr_warmup_until > 0 and iteration <= cfg.lr_warmup_until:
set_lr(optimizer, (args.lr - cfg.lr_warmup_init) * (iteration / cfg.lr_warmup_until) + cfg.lr_warmup_init)
# Adjust the learning rate at the given iterations, but also if we resume from past that iteration
while step_index < len(cfg.lr_steps) and iteration >= cfg.lr_steps[step_index]:
step_index += 1
set_lr(optimizer, args.lr * (args.gamma ** step_index))
# Zero the grad to get ready to compute gradients
optimizer.zero_grad()
# Forward Pass + Compute loss at the same time (see CustomDataParallel and NetLoss)
losses = net(datum)
losses = { k: (v).mean() for k,v in losses.items() } # Mean here because Dataparallel
loss = sum([losses[k] for k in losses])
#avg loss for wandb?
#avg_loss += loss.item()
# no_inf_mean removes some components from the loss, so make sure to backward through all of it
# all_loss = sum([v.mean() for v in losses.values()])
# Backprop
loss.backward() # Do this to free up vram even if loss is not finite
if torch.isfinite(loss).item():
optimizer.step()
# Add the loss to the moving average for bookkeeping
for k in losses:
loss_avgs[k].add(losses[k].item())
cur_time = time.time()
elapsed = cur_time - last_time
last_time = cur_time
# Exclude graph setup from the timing information
if iteration != args.start_iter:
time_avg.add(elapsed)
if iteration % 10 == 0:
eta_str = str(datetime.timedelta(seconds=(cfg.max_iter-iteration) * time_avg.get_avg())).split('.')[0]
total = sum([loss_avgs[k].get_avg() for k in losses])
loss_labels = sum([[k, loss_avgs[k].get_avg()] for k in loss_types if k in losses], [])
if WANDB:
loss_dict = {}
for k in losses:
loss_dict['moving_avg_loss_' + k] = round(loss_avgs[k].get_avg(),5)
wandb.log(loss_dict, step=iteration)
print(('Epoch: %3d | Iteration %7d ||' + (' %s: %.3f |' * len(losses)) + ' T: %.3f || ETA: %s || timer: %.3f')
% tuple([epoch, iteration] + loss_labels + [total, eta_str, elapsed]), flush=True)
if args.log:
precision = 5
loss_info = {k: round(losses[k].item(), precision) for k in losses}
loss_info['T'] = round(loss.item(), precision)
if WANDB:
loss_dict = {}
loss_dict = {'loss_'+k: round(losses[k].item(),precision) for k in losses}
loss_dict['loss_T'] = round(loss.item(), precision)
wandb.log(loss_dict, step=iteration)
if args.log_gpu:
log.log_gpu_stats = (iteration % 10 == 0) # nvidia-smi is sloooow
log.log('train', loss=loss_info, epoch=epoch, iter=iteration,
lr=round(cur_lr, 10), elapsed=elapsed)
log.log_gpu_stats = args.log_gpu
#also compute validation loss every 3000 iterations
if iteration > 0 and iteration % 3000 == 0:
compute_validation_loss(net, val_data_loader, log, epoch, iteration)
iteration += 1
if iteration % args.save_interval == 0 and iteration != args.start_iter:
if args.keep_latest:
latest = SavePath.get_latest(args.save_folder, cfg.name)
print('Saving state, iter:', iteration)
yolact_net.save_weights(save_path(epoch, iteration))
if args.keep_latest and latest is not None:
if args.keep_latest_interval <= 0 or iteration % args.keep_latest_interval != args.save_interval:
print('Deleting old save...')
os.remove(latest)
# This is done per epoch
if args.validation_epoch > 0:
if epoch % args.validation_epoch == 0 and epoch > 0:
compute_validation_map(epoch, iteration, yolact_net, val_dataset, log if args.log else None)
print("Training is done! Now computing validation mAP a final time...")
# one final validation loss calculation:
compute_validation_loss(net, val_data_loader, log, epoch, iteration)
# Compute validation mAP after training is finished
compute_validation_map(epoch, iteration, yolact_net, val_dataset, log if args.log else None)
except KeyboardInterrupt:
if args.interrupt:
print('Stopping early. Saving network...')
# Delete previous copy of the interrupted network so we don't spam the weights folder
SavePath.remove_interrupt(args.save_folder)
yolact_net.save_weights(save_path(epoch, repr(iteration) + '_interrupt'))
exit()
yolact_net.save_weights(save_path(epoch, iteration))
"""
def compute_validation_loss(net, dataset, log : Log):
#Calculates the loss on the validation dataset.
print('Calculating validaton losses, this may take a while...')
global loss_types
with torch.no_grad():
net.eval()
losses = {}
dataset_indices = list(range(len(dataset)))
dataset_indices = dataset_indices[:100]
# Don't switch to eval mode here. Warning: this is viable but changes the interpretation of the validation loss.
# trial with and without eval()
for it, image_idx in enumerate(dataset_indices):
img, gt, gt_masks, h, w, num_crowd = dataset.pull_item(image_idx)
continue
batch = Variable(img.unsqueeze(0))
preds = net(batch)
#loss_labels = sum([[k, losses[k]] for k in loss_types if k in losses], [])
#print(('Validation Loss||' + (' %s: %.3f |' * len(losses)) + ')') % tuple(loss_labels), flush=True)
net.train()
"""
def compute_validation_loss(net, data_loader, log : Log, epoch, i):
#Calculates the loss on the validation dataset.
# note: epoch and iter are from the training loop, not the local epoch and iter
print('Calculating validaton losses, this may take a while...')
start_time = time.time()
global loss_types
with torch.no_grad():
val_loss_avg = {}
val_loss_avg['B'] = 0
val_loss_avg['M'] = 0
val_loss_avg['C'] = 0
val_loss_avg['S'] = 0
val_loss_avg['T'] = 0
losses = {}
problematic_datums = []
#net.eval()
# Don't switch to eval mode here. Warning: this is viable but changes the interpretation of the validation loss.
# TODO: trial with and without eval()
iterations = 0
for datum in data_loader:
iterations += 1
#if i > 1000:
# break
try:
losses = net(datum)
except Exception as e:
print(e)
problematic_datums.append(datum)
continue
losses = { k: (v).mean() for k,v in losses.items() }
loss = sum([losses[k] for k in losses])
precision = 5
val_loss_info = {k: round(losses[k].item(), precision) for k in losses}
val_loss_info['T'] = round(loss.item(), precision)
val_loss_avg['B'] += val_loss_info['B']
val_loss_avg['M'] += val_loss_info['M']
val_loss_avg['C'] += val_loss_info['C']
val_loss_avg['S'] += val_loss_info['S']
val_loss_avg['T'] += val_loss_info['T']
for key in val_loss_avg:
val_loss_avg[key] = (val_loss_avg[key]/iterations)
end_time = time.time()
print(val_loss_avg)
log.log('val-loss', val_loss=val_loss_avg, epoch=epoch, iter=i, elapsed=(end_time - start_time))
if WANDB:
loss_dict = {}
for k in val_loss_avg:
loss_dict['val_'+k] = val_loss_avg[k]
wandb.log(loss_dict, step=i)
#f = open('problematic_datums.txt', 'a')
#f.write('\n\n------------------------------------------------')
#f.write('\n\nNEW CALCULATION ITERATION \n\n')
#f.write('------------------------------------------------')
#f.write('Nr. Problematic Datums: ' + str(len(problematic_datums)) + '\n\n')
#f.write(str(problematic_datums))
#f.close()
#net.train()
def set_lr(optimizer, new_lr):
for param_group in optimizer.param_groups:
param_group['lr'] = new_lr
global cur_lr
cur_lr = new_lr
def gradinator(x):
x.requires_grad = False
return x
def prepare_data(datum, devices:list=None, allocation:list=None):
with torch.no_grad():
if devices is None:
devices = ['cuda:0'] if args.cuda else ['cpu']
if allocation is None:
allocation = [args.batch_size // len(devices)] * (len(devices) - 1)
allocation.append(args.batch_size - sum(allocation)) # The rest might need more/less
images, (targets, masks, num_crowds) = datum
cur_idx = 0
for device, alloc in zip(devices, allocation):
for _ in range(alloc):
images[cur_idx] = gradinator(images[cur_idx].to(device))
targets[cur_idx] = gradinator(targets[cur_idx].to(device))
masks[cur_idx] = gradinator(masks[cur_idx].to(device))
cur_idx += 1
if cfg.preserve_aspect_ratio:
# Choose a random size from the batch
_, h, w = images[random.randint(0, len(images)-1)].size()
for idx, (image, target, mask, num_crowd) in enumerate(zip(images, targets, masks, num_crowds)):
images[idx], targets[idx], masks[idx], num_crowds[idx] \
= enforce_size(image, target, mask, num_crowd, w, h)
cur_idx = 0
split_images, split_targets, split_masks, split_numcrowds \
= [[None for alloc in allocation] for _ in range(4)]
for device_idx, alloc in enumerate(allocation):
split_images[device_idx] = torch.stack(images[cur_idx:cur_idx+alloc], dim=0)
split_targets[device_idx] = targets[cur_idx:cur_idx+alloc]
split_masks[device_idx] = masks[cur_idx:cur_idx+alloc]
split_numcrowds[device_idx] = num_crowds[cur_idx:cur_idx+alloc]
cur_idx += alloc
return split_images, split_targets, split_masks, split_numcrowds
def no_inf_mean(x:torch.Tensor):
"""
Computes the mean of a vector, throwing out all inf values.
If there are no non-inf values, this will return inf (i.e., just the normal mean).
"""
no_inf = [a for a in x if torch.isfinite(a)]
if len(no_inf) > 0:
return sum(no_inf) / len(no_inf)
else:
return x.mean()
#this is the old compute_validation loss class from dbolya
"""
def compute_validation_loss(net, data_loader, criterion):
global loss_types
with torch.no_grad():
losses = {}
# Don't switch to eval mode because we want to get losses
iterations = 0
for datum in data_loader:
images, targets, masks, num_crowds = prepare_data(datum)
out = net(images)
wrapper = ScatterWrapper(targets, masks, num_crowds)
_losses = criterion(out, wrapper, wrapper.make_mask())
for k, v in _losses.items():
v = v.mean().item()
if k in losses:
losses[k] += v
else:
losses[k] = v
iterations += 1
if args.validation_size <= iterations * args.batch_size:
break
for k in losses:
losses[k] /= iterations
loss_labels = sum([[k, losses[k]] for k in loss_types if k in losses], [])
#wandb.log({"validation-loss" : loss_labels})
print(('Validation ||' + (' %s: %.3f |' * len(losses)) + ')') % tuple(loss_labels), flush=True)
"""
def compute_validation_map(epoch, iteration, yolact_net, dataset, log:Log=None):
with torch.no_grad():
yolact_net.eval()
start = time.time()
print()
print("Computing validation mAP (this may take a while)...", flush=True)
val_info = eval_script.evaluate(yolact_net, dataset, train_mode=True)
end = time.time()
if log is not None:
log.log('val', val_info, elapsed=(end - start), epoch=epoch, iter=iteration)
yolact_net.train()
def setup_eval():
eval_script.parse_args(['--no_bar', '--max_images='+str(args.validation_size)])
if __name__ == '__main__':
WANDB = True
try:
if WANDB:
if args.refinement_mode:
print("entering refinement wandb")
wandb.init(
project = 'BscThesis',
config= {
'config_name' : cfg.name,
'learning-rate' : cfg.lr,
'architecture' : args.config,
'dataset' : cfg.dataset,
'iterations' : cfg.max_iter,
'refinement-mode' : True,
'ratio_pbr_to_real' : cfg.ratio_pbr_to_real
}
)
else:
wandb.init(
project = 'BscThesis',
config= {