-
Notifications
You must be signed in to change notification settings - Fork 2
/
train_pgnn_naive.py
125 lines (102 loc) · 3.79 KB
/
train_pgnn_naive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import argparse
import dgl
import torch
import torch.nn as nn
from adamp import AdamP
from box import Box
from dgl.data.utils import load_graphs
from PGNN.nets.pgnn import PGNN
from PGNN.utils.generate_data import prepare_data
def get_config():
nf_dim = 3
ef_dim = 2
u_dim = 1
cfg = Box({
'model': {
'edge_in_dim': ef_dim,
'node_in_dim': nf_dim,
'global_in_dim': u_dim,
'n_pgn_layers': 3,
'edge_hidden_dim': 50,
'node_hidden_dim': 50,
'global_hidden_dim': 50,
'residual': True,
'input_norm': True,
'pgn_mlp_params': {'num_neurons': [256, 128],
'hidden_act': 'ReLU',
'out_act': 'ReLU'},
'reg_mlp_params': {'num_neurons': [64, 32, 16],
'hidden_act': 'ReLU',
'out_act': 'ReLU'},
'pgn_params': {'edge_aggregator': 'mean',
'global_node_aggr': 'mean',
'global_edge_aggr': 'mean'}
},
'train': {
'batch_size': 512,
'reset_g_every': 64,
'log_every': 100,
'train_steps': 20000,
}
})
return cfg
def main(device):
# if use_ws_only is true, global feature 'u' only contains wind speed
# if use_ws_only is false, global feature 'u' contains wind speed and direction
# we experimentally re-confirmed that using only wind speed as the global feature
# results in better prediction results.
use_ws_only = True
config = get_config()
# prepare validation data
val_gs, labels = load_graphs('val_gs3.bin')
val_us = labels['global_feat']
val_us = val_us.to(device)
val_gs = dgl.batch(val_gs).to(device)
if use_ws_only:
val_us = val_us[:, 0].view(-1, 1)
m = PGNN(**config.model).to(device)
crit = nn.MSELoss()
opt = AdamP(m.parameters(), lr=1e-3)
scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(opt, T_0=50)
n_update = 0
for epoch in range(config.train.train_steps):
if n_update % config.train.reset_g_every == 0:
gs, us = prepare_data(config.train.batch_size)
gs = dgl.batch(gs)
us = torch.stack(us)
gs = gs.to(device)
us = us.to(device)
if use_ws_only:
us = us[:, 0].view(-1, 1)
nf, ef = gs.ndata['feat'], gs.edata['feat']
# augment input node feature to have Euclidean coordinates.
# we found that this augmentation helps for better generalization.
nf = torch.cat([nf, gs.ndata['x'], gs.ndata['y']], dim=-1)
pred = m(gs, nf, ef, us)
loss = crit(pred, gs.ndata['power'])
opt.zero_grad()
loss.backward()
opt.step()
scheduler.step()
# logging
log_dict = dict()
log_dict['lr'] = opt.param_groups[0]['lr']
log_dict['loss'] = loss
n_update += 1
if n_update % config.train.log_every == 0:
with torch.no_grad():
m.eval()
val_nf, val_ef = val_gs.ndata['feat'], val_gs.edata['feat']
val_nf = torch.cat([val_nf, val_gs.ndata['x'], val_gs.ndata['y']], dim=-1)
val_pred = m(val_gs, val_nf, val_ef, val_us)
val_loss = crit(val_pred, val_gs.ndata['power'])
log_dict['val_loss'] = val_loss
m.train()
print('step {}/{}'.format(n_update, config.train.train_steps))
for k, v in log_dict.items():
print(k, ' : ', v)
if __name__ == '__main__':
p = argparse.ArgumentParser()
p.add_argument('-device', type=str, default='cuda:0', help='fitting device')
args = p.parse_args()
main(args.device)