diff --git a/docs/src/index.md b/docs/src/index.md index 5ddae840..f06f31f6 100644 --- a/docs/src/index.md +++ b/docs/src/index.md @@ -7,7 +7,7 @@ DocTestSetup = :(using SparseArrays, LinearAlgebra) Julia has support for sparse vectors and [sparse matrices](https://en.wikipedia.org/wiki/Sparse_matrix) in the `SparseArrays` stdlib module. Sparse arrays are arrays that contain enough zeros that storing them in a special data structure leads to savings in space and execution time, compared to dense arrays. -External packages which implement different sparse storage types, multidimensional sparse arrays, and more can be found in [Noteworthy external packages](@ref man-csc) +External packages which implement different sparse storage types, multidimensional sparse arrays, and more can be found in [Noteworthy external packages](@ref) ## [Compressed Sparse Column (CSC) Sparse Matrix Storage](@id man-csc) diff --git a/docs/src/solvers.md b/docs/src/solvers.md index 91214c5c..b8447b4c 100644 --- a/docs/src/solvers.md +++ b/docs/src/solvers.md @@ -15,10 +15,10 @@ Sparse matrix solvers call functions from [SuiteSparse](http://suitesparse.com). Other solvers such as [Pardiso.jl](https://github.com/JuliaSparse/Pardiso.jl/) are available as external packages. [Arpack.jl](https://julialinearalgebra.github.io/Arpack.jl/stable/) provides `eigs` and `svds` for iterative solution of eigensystems and singular value decompositions. These factorizations are described in more detail in [`Linear Algebra`](https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/) section of the manual: -1. [`cholesky`](@ref) -2. [`ldlt`](@ref) -3. [`lu`](@ref) -4. [`qr`](@ref) +1. [`cholesky`](@ref SparseArrays.CHOLMOD.cholesky) +2. [`ldlt`](@ref SparseArrays.CHOLMOD.ldlt) +3. [`lu`](@ref SparseArrays.UMFPACK.lu) +4. [`qr`](@ref SparseArrays.SPQR.qr) ```@docs SparseArrays.CHOLMOD.cholesky