From ca40da451f896acb404d56dc5cf7c424f88c1893 Mon Sep 17 00:00:00 2001 From: Mike Rouleau <44850854+mikerouleau@users.noreply.github.com> Date: Sat, 9 Apr 2022 20:08:58 +0000 Subject: [PATCH] add LinearAlgebra.normalize fallback for scalars (#44835) fix NaN == NaN error --- stdlib/LinearAlgebra/src/generic.jl | 20 ++++++++++++++++---- stdlib/LinearAlgebra/test/generic.jl | 6 ++++++ 2 files changed, 22 insertions(+), 4 deletions(-) diff --git a/stdlib/LinearAlgebra/src/generic.jl b/stdlib/LinearAlgebra/src/generic.jl index 2449a78fda317..c79849535ad0a 100644 --- a/stdlib/LinearAlgebra/src/generic.jl +++ b/stdlib/LinearAlgebra/src/generic.jl @@ -1790,11 +1790,12 @@ end end """ - normalize(a::AbstractArray, p::Real=2) + normalize(a, p::Real=2) -Normalize the array `a` so that its `p`-norm equals unity, -i.e. `norm(a, p) == 1`. -See also [`normalize!`](@ref) and [`norm`](@ref). +Normalize `a` so that its `p`-norm equals unity, +i.e. `norm(a, p) == 1`. For scalars, this is similar to sign(a), +except normalize(0) = NaN. +See also [`normalize!`](@ref), [`norm`](@ref), and [`sign`](@ref). # Examples ```jldoctest @@ -1831,6 +1832,14 @@ julia> normalize(a) 0.154303 0.308607 0.617213 0.154303 0.308607 0.617213 +julia> normalize(3, 1) +1.0 + +julia> normalize(-8, 1) +-1.0 + +julia> normalize(0, 1) +NaN ``` """ function normalize(a::AbstractArray, p::Real = 2) @@ -1843,3 +1852,6 @@ function normalize(a::AbstractArray, p::Real = 2) return T[] end end + +normalize(x) = x / norm(x) +normalize(x, p::Real) = x / norm(x, p) diff --git a/stdlib/LinearAlgebra/test/generic.jl b/stdlib/LinearAlgebra/test/generic.jl index 69f2fff00755f..8ca829184314b 100644 --- a/stdlib/LinearAlgebra/test/generic.jl +++ b/stdlib/LinearAlgebra/test/generic.jl @@ -375,6 +375,12 @@ end @test typeof(normalize([1 2 3; 4 5 6])) == Array{Float64,2} end +@testset "normalize for scalars" begin + @test normalize(8.0) == 1.0 + @test normalize(-3.0) == -1.0 + @test isnan(normalize(0.0)) +end + @testset "Issue #30466" begin @test norm([typemin(Int), typemin(Int)], Inf) == -float(typemin(Int)) @test norm([typemin(Int), typemin(Int)], 1) == -2float(typemin(Int))