From 21b640b94eb1911a2f2e8bd70f641d0cfed70b8f Mon Sep 17 00:00:00 2001 From: Daniel Karrasch Date: Thu, 4 Apr 2019 20:17:32 +0200 Subject: [PATCH] minor fixes in multiplication with Diagonals (#31443) * minor fixes in multiplication with Diagonals * correct rmul!(A,D), revert changes in AdjTrans(x)*D * [r/l]mul!: replace conj by adjoint, add transpose * add tests * fix typo * relax some tests, added more tests * simplify tests, strict equality (cherry picked from commit a93185fa4ea70c2dc89cbe6a0705876768e08594) --- stdlib/LinearAlgebra/src/diagonal.jl | 13 ++++++------- stdlib/LinearAlgebra/test/diagonal.jl | 26 +++++++++++++++++++++----- 2 files changed, 27 insertions(+), 12 deletions(-) diff --git a/stdlib/LinearAlgebra/src/diagonal.jl b/stdlib/LinearAlgebra/src/diagonal.jl index b73279abb2878..2589172dfb84b 100644 --- a/stdlib/LinearAlgebra/src/diagonal.jl +++ b/stdlib/LinearAlgebra/src/diagonal.jl @@ -172,7 +172,7 @@ end function rmul!(A::AbstractMatrix, D::Diagonal) @assert !has_offset_axes(A) - A .= A .* transpose(D.diag) + A .= A .* permutedims(D.diag) return A end @@ -260,20 +260,20 @@ lmul!(A::Diagonal, B::Diagonal) = Diagonal(B.diag .= A.diag .* B.diag) function lmul!(adjA::Adjoint{<:Any,<:Diagonal}, B::AbstractMatrix) A = adjA.parent - return lmul!(conj(A.diag), B) + return lmul!(adjoint(A), B) end function lmul!(transA::Transpose{<:Any,<:Diagonal}, B::AbstractMatrix) A = transA.parent - return lmul!(A.diag, B) + return lmul!(transpose(A), B) end function rmul!(A::AbstractMatrix, adjB::Adjoint{<:Any,<:Diagonal}) B = adjB.parent - return rmul!(A, conj(B.diag)) + return rmul!(A, adjoint(B)) end function rmul!(A::AbstractMatrix, transB::Transpose{<:Any,<:Diagonal}) B = transB.parent - return rmul!(A, B.diag) + return rmul!(A, transpose(B)) end # Get ambiguous method if try to unify AbstractVector/AbstractMatrix here using AbstractVecOrMat @@ -552,10 +552,9 @@ end *(x::Adjoint{<:Any,<:AbstractVector}, D::Diagonal) = Adjoint(map((t,s) -> t'*s, D.diag, parent(x))) *(x::Adjoint{<:Any,<:AbstractVector}, D::Diagonal, y::AbstractVector) = mapreduce(t -> t[1]*t[2]*t[3], +, zip(x, D.diag, y)) -*(x::Transpose{<:Any,<:AbstractVector}, D::Diagonal) = Transpose(map(*, D.diag, parent(x))) +*(x::Transpose{<:Any,<:AbstractVector}, D::Diagonal) = Transpose(map((t,s) -> transpose(t)*s, D.diag, parent(x))) *(x::Transpose{<:Any,<:AbstractVector}, D::Diagonal, y::AbstractVector) = mapreduce(t -> t[1]*t[2]*t[3], +, zip(x, D.diag, y)) -# TODO: these methods will yield row matrices, rather than adjoint/transpose vectors function cholesky!(A::Diagonal, ::Val{false} = Val(false); check::Bool = true) info = 0 diff --git a/stdlib/LinearAlgebra/test/diagonal.jl b/stdlib/LinearAlgebra/test/diagonal.jl index 2f7f2a698a61f..9e6169f930ae6 100644 --- a/stdlib/LinearAlgebra/test/diagonal.jl +++ b/stdlib/LinearAlgebra/test/diagonal.jl @@ -461,10 +461,20 @@ end fullBB = copyto!(Matrix{Matrix{T}}(undef, 2, 2), BB) for (transform1, transform2) in ((identity, identity), (identity, adjoint ), (adjoint, identity ), (adjoint, adjoint ), - (identity, transpose), (transpose, identity ), (transpose, transpose) ) + (identity, transpose), (transpose, identity ), (transpose, transpose), + (identity, Adjoint ), (Adjoint, identity ), (Adjoint, Adjoint ), + (identity, Transpose), (Transpose, identity ), (Transpose, Transpose)) @test *(transform1(D), transform2(B))::typeof(D) ≈ *(transform1(Matrix(D)), transform2(Matrix(B))) atol=2 * eps() @test *(transform1(DD), transform2(BB))::typeof(DD) == *(transform1(fullDD), transform2(fullBB)) end + M = randn(T, 5, 5) + MM = [randn(T, 2, 2) for _ in 1:2, _ in 1:2] + for transform in (identity, adjoint, transpose, Adjoint, Transpose) + @test lmul!(transform(D), copy(M)) == *(transform(Matrix(D)), M) + @test rmul!(copy(M), transform(D)) == *(M, transform(Matrix(D))) + @test lmul!(transform(DD), copy(MM)) == *(transform(fullDD), MM) + @test rmul!(copy(MM), transform(DD)) == *(MM, transform(fullDD)) + end end end @@ -474,10 +484,16 @@ end end @testset "Multiplication with Adjoint and Transpose vectors (#26863)" begin - x = rand(5) - D = Diagonal(rand(5)) - @test x'*D*x == (x'*D)*x == (x'*Array(D))*x - @test Transpose(x)*D*x == (Transpose(x)*D)*x == (Transpose(x)*Array(D))*x + x = collect(1:2) + xt = transpose(x) + A = reshape([[1 2; 3 4], zeros(Int,2,2), zeros(Int, 2, 2), [5 6; 7 8]], 2, 2) + D = Diagonal(A) + @test x'*D == x'*A == copy(x')*D == copy(x')*A + @test xt*D == xt*A == copy(xt)*D == copy(xt)*A + y = [x, x] + yt = transpose(y) + @test y'*D*y == (y'*D)*y == (y'*A)*y + @test yt*D*y == (yt*D)*y == (yt*A)*y end @testset "Triangular division by Diagonal #27989" begin