-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
complex.jl
1016 lines (895 loc) · 28 KB
/
complex.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# This file is a part of Julia. License is MIT: https://julialang.org/license
"""
Complex{T<:Real} <: Number
Complex number type with real and imaginary part of type `T`.
`ComplexF16`, `ComplexF32` and `ComplexF64` are aliases for
`Complex{Float16}`, `Complex{Float32}` and `Complex{Float64}` respectively.
"""
struct Complex{T<:Real} <: Number
re::T
im::T
end
Complex(x::Real, y::Real) = Complex(promote(x,y)...)
Complex(x::Real) = Complex(x, zero(x))
"""
im
The imaginary unit.
# Examples
```jldoctest
julia> im * im
-1 + 0im
```
"""
const im = Complex(false, true)
const ComplexF64 = Complex{Float64}
const ComplexF32 = Complex{Float32}
const ComplexF16 = Complex{Float16}
Complex{T}(x::Real) where {T<:Real} = Complex{T}(x,0)
Complex{T}(z::Complex) where {T<:Real} = Complex{T}(real(z),imag(z))
(::Type{T})(z::Complex) where {T<:Real} =
isreal(z) ? T(real(z))::T : throw(InexactError(nameof(T), T, z))
Complex(z::Complex) = z
promote_rule(::Type{Complex{T}}, ::Type{S}) where {T<:Real,S<:Real} =
Complex{promote_type(T,S)}
promote_rule(::Type{Complex{T}}, ::Type{Complex{S}}) where {T<:Real,S<:Real} =
Complex{promote_type(T,S)}
widen(::Type{Complex{T}}) where {T} = Complex{widen(T)}
float(::Type{Complex{T}}) where {T<:AbstractFloat} = Complex{T}
float(::Type{Complex{T}}) where {T} = Complex{float(T)}
"""
real(z)
Return the real part of the complex number `z`.
# Examples
```jldoctest
julia> real(1 + 3im)
1
```
"""
real(z::Complex) = z.re
"""
imag(z)
Return the imaginary part of the complex number `z`.
# Examples
```jldoctest
julia> imag(1 + 3im)
3
```
"""
imag(z::Complex) = z.im
real(x::Real) = x
imag(x::Real) = zero(x)
"""
reim(z)
Return both the real and imaginary parts of the complex number `z`.
# Examples
```jldoctest
julia> reim(1 + 3im)
(1, 3)
```
"""
reim(z) = (real(z), imag(z))
"""
real(T::Type)
Return the type that represents the real part of a value of type `T`.
e.g: for `T == Complex{R}`, returns `R`.
Equivalent to `typeof(real(zero(T)))`.
# Examples
```jldoctest
julia> real(Complex{Int})
Int64
julia> real(Float64)
Float64
```
"""
real(T::Type) = typeof(real(zero(T)))
real(::Type{T}) where {T<:Real} = T
real(::Type{Complex{T}}) where {T<:Real} = T
"""
isreal(x) -> Bool
Test whether `x` or all its elements are numerically equal to some real number
including infinities and NaNs. `isreal(x)` is true if `isequal(x, real(x))`
is true.
# Examples
```jldoctest
julia> isreal(5.)
true
julia> isreal(Inf + 0im)
true
julia> isreal([4.; complex(0,1)])
false
```
"""
isreal(x::Real) = true
isreal(z::Complex) = iszero(imag(z))
isinteger(z::Complex) = isreal(z) & isinteger(real(z))
isfinite(z::Complex) = isfinite(real(z)) & isfinite(imag(z))
isnan(z::Complex) = isnan(real(z)) | isnan(imag(z))
isinf(z::Complex) = isinf(real(z)) | isinf(imag(z))
iszero(z::Complex) = iszero(real(z)) & iszero(imag(z))
isone(z::Complex) = isone(real(z)) & iszero(imag(z))
"""
complex(r, [i])
Convert real numbers or arrays to complex. `i` defaults to zero.
# Examples
```jldoctest
julia> complex(7)
7 + 0im
julia> complex([1, 2, 3])
3-element Array{Complex{Int64},1}:
1 + 0im
2 + 0im
3 + 0im
```
"""
complex(z::Complex) = z
complex(x::Real) = Complex(x)
complex(x::Real, y::Real) = Complex(x, y)
"""
complex(T::Type)
Return an appropriate type which can represent a value of type `T` as a complex number.
Equivalent to `typeof(complex(zero(T)))`.
# Examples
```jldoctest
julia> complex(Complex{Int})
Complex{Int64}
julia> complex(Int)
Complex{Int64}
```
"""
complex(::Type{T}) where {T<:Real} = Complex{T}
complex(::Type{Complex{T}}) where {T<:Real} = Complex{T}
flipsign(x::Complex, y::Real) = ifelse(signbit(y), -x, x)
function show(io::IO, z::Complex)
r, i = reim(z)
compact = get(io, :compact, false)
show(io, r)
if signbit(i) && !isnan(i)
i = -i
print(io, compact ? "-" : " - ")
else
print(io, compact ? "+" : " + ")
end
show(io, i)
if !(isa(i,Integer) && !isa(i,Bool) || isa(i,AbstractFloat) && isfinite(i))
print(io, "*")
end
print(io, "im")
end
show(io::IO, z::Complex{Bool}) =
print(io, z == im ? "im" : "Complex($(z.re),$(z.im))")
function show_unquoted(io::IO, z::Complex, ::Int, prec::Int)
if operator_precedence(:+) <= prec
print(io, "(")
show(io, z)
print(io, ")")
else
show(io, z)
end
end
function read(s::IO, ::Type{Complex{T}}) where T<:Real
r = read(s,T)
i = read(s,T)
Complex{T}(r,i)
end
function write(s::IO, z::Complex)
write(s,real(z),imag(z))
end
## byte order swaps: real and imaginary part are swapped individually
bswap(z::Complex) = Complex(bswap(real(z)), bswap(imag(z)))
## equality and hashing of complex numbers ##
==(z::Complex, w::Complex) = (real(z) == real(w)) & (imag(z) == imag(w))
==(z::Complex, x::Real) = isreal(z) && real(z) == x
==(x::Real, z::Complex) = isreal(z) && real(z) == x
isequal(z::Complex, w::Complex) = isequal(real(z),real(w)) & isequal(imag(z),imag(w))
in(x::Complex, r::AbstractRange{<:Real}) = isreal(x) && real(x) in r
if UInt === UInt64
const h_imag = 0x32a7a07f3e7cd1f9
else
const h_imag = 0x3e7cd1f9
end
const hash_0_imag = hash(0, h_imag)
function hash(z::Complex, h::UInt)
# TODO: with default argument specialization, this would be better:
# hash(real(z), h ⊻ hash(imag(z), h ⊻ h_imag) ⊻ hash(0, h ⊻ h_imag))
hash(real(z), h ⊻ hash(imag(z), h_imag) ⊻ hash_0_imag)
end
## generic functions of complex numbers ##
"""
conj(z)
Compute the complex conjugate of a complex number `z`.
# Examples
```jldoctest
julia> conj(1 + 3im)
1 - 3im
```
"""
conj(z::Complex) = Complex(real(z),-imag(z))
abs(z::Complex) = hypot(real(z), imag(z))
abs2(z::Complex) = real(z)*real(z) + imag(z)*imag(z)
inv(z::Complex) = conj(z)/abs2(z)
inv(z::Complex{<:Integer}) = inv(float(z))
-(z::Complex) = Complex(-real(z), -imag(z))
+(z::Complex, w::Complex) = Complex(real(z) + real(w), imag(z) + imag(w))
-(z::Complex, w::Complex) = Complex(real(z) - real(w), imag(z) - imag(w))
*(z::Complex, w::Complex) = Complex(real(z) * real(w) - imag(z) * imag(w),
real(z) * imag(w) + imag(z) * real(w))
muladd(z::Complex, w::Complex, x::Complex) =
Complex(muladd(real(z), real(w), real(x)) - imag(z)*imag(w), # TODO: use mulsub given #15985
muladd(real(z), imag(w), muladd(imag(z), real(w), imag(x))))
# handle Bool and Complex{Bool}
# avoid type signature ambiguity warnings
+(x::Bool, z::Complex{Bool}) = Complex(x + real(z), imag(z))
+(z::Complex{Bool}, x::Bool) = Complex(real(z) + x, imag(z))
-(x::Bool, z::Complex{Bool}) = Complex(x - real(z), - imag(z))
-(z::Complex{Bool}, x::Bool) = Complex(real(z) - x, imag(z))
*(x::Bool, z::Complex{Bool}) = Complex(x * real(z), x * imag(z))
*(z::Complex{Bool}, x::Bool) = Complex(real(z) * x, imag(z) * x)
+(x::Bool, z::Complex) = Complex(x + real(z), imag(z))
+(z::Complex, x::Bool) = Complex(real(z) + x, imag(z))
-(x::Bool, z::Complex) = Complex(x - real(z), - imag(z))
-(z::Complex, x::Bool) = Complex(real(z) - x, imag(z))
*(x::Bool, z::Complex) = Complex(x * real(z), x * imag(z))
*(z::Complex, x::Bool) = Complex(real(z) * x, imag(z) * x)
+(x::Real, z::Complex{Bool}) = Complex(x + real(z), imag(z))
+(z::Complex{Bool}, x::Real) = Complex(real(z) + x, imag(z))
function -(x::Real, z::Complex{Bool})
# we don't want the default type for -(Bool)
re = x-real(z)
Complex(re, - oftype(re, imag(z)))
end
-(z::Complex{Bool}, x::Real) = Complex(real(z) - x, imag(z))
*(x::Real, z::Complex{Bool}) = Complex(x * real(z), x * imag(z))
*(z::Complex{Bool}, x::Real) = Complex(real(z) * x, imag(z) * x)
# adding or multiplying real & complex is common
+(x::Real, z::Complex) = Complex(x + real(z), imag(z))
+(z::Complex, x::Real) = Complex(x + real(z), imag(z))
function -(x::Real, z::Complex)
# we don't want the default type for -(Bool)
re = x - real(z)
Complex(re, - oftype(re, imag(z)))
end
-(z::Complex, x::Real) = Complex(real(z) - x, imag(z))
*(x::Real, z::Complex) = Complex(x * real(z), x * imag(z))
*(z::Complex, x::Real) = Complex(x * real(z), x * imag(z))
muladd(x::Real, z::Complex, y::Number) = muladd(z, x, y)
muladd(z::Complex, x::Real, y::Real) = Complex(muladd(real(z),x,y), imag(z)*x)
muladd(z::Complex, x::Real, w::Complex) =
Complex(muladd(real(z),x,real(w)), muladd(imag(z),x,imag(w)))
muladd(x::Real, y::Real, z::Complex) = Complex(muladd(x,y,real(z)), imag(z))
muladd(z::Complex, w::Complex, x::Real) =
Complex(muladd(real(z), real(w), x) - imag(z)*imag(w), # TODO: use mulsub given #15985
muladd(real(z), imag(w), imag(z) * real(w)))
/(a::R, z::S) where {R<:Real,S<:Complex} = (T = promote_type(R,S); a*inv(T(z)))
/(z::Complex, x::Real) = Complex(real(z)/x, imag(z)/x)
function /(a::Complex{T}, b::Complex{T}) where T<:Real
are = real(a); aim = imag(a); bre = real(b); bim = imag(b)
if abs(bre) <= abs(bim)
if isinf(bre) && isinf(bim)
r = sign(bre)/sign(bim)
else
r = bre / bim
end
den = bim + r*bre
Complex((are*r + aim)/den, (aim*r - are)/den)
else
if isinf(bre) && isinf(bim)
r = sign(bim)/sign(bre)
else
r = bim / bre
end
den = bre + r*bim
Complex((are + aim*r)/den, (aim - are*r)/den)
end
end
inv(z::Complex{<:Union{Float16,Float32}}) =
oftype(z, conj(widen(z))/abs2(widen(z)))
/(z::Complex{T}, w::Complex{T}) where {T<:Union{Float16,Float32}} =
oftype(z, widen(z)*inv(widen(w)))
# robust complex division for double precision
# variables are scaled & unscaled to avoid over/underflow, if necessary
# based on arxiv.1210.4539
# a + i*b
# p + i*q = ---------
# c + i*d
function /(z::ComplexF64, w::ComplexF64)
a, b = reim(z); c, d = reim(w)
absa = abs(a); absb = abs(b); ab = absa >= absb ? absa : absb # equiv. to max(abs(a),abs(b)) but without NaN-handling (faster)
absc = abs(c); absd = abs(d); cd = absc >= absd ? absc : absd
halfov = 0.5*floatmax(Float64) # overflow threshold
twounϵ = floatmin(Float64)*2.0/eps(Float64) # underflow threshold
# actual division operations
if ab>=halfov || ab<=twounϵ || cd>=halfov || cd<=twounϵ # over/underflow case
p,q = scaling_cdiv(a,b,c,d,ab,cd) # scales a,b,c,d before division (unscales after)
else
p,q = cdiv(a,b,c,d)
end
return ComplexF64(p,q)
end
# sub-functionality for /(z::ComplexF64, w::ComplexF64)
@inline function cdiv(a::Float64, b::Float64, c::Float64, d::Float64)
if abs(d)<=abs(c)
p,q = robust_cdiv1(a,b,c,d)
else
p,q = robust_cdiv1(b,a,d,c)
q = -q
end
return p,q
end
@noinline function scaling_cdiv(a::Float64, b::Float64, c::Float64, d::Float64, ab::Float64, cd::Float64)
# this over/underflow functionality is outlined for performance, cf. #29688
a,b,c,d,s = scaleargs_cdiv(a,b,c,d,ab,cd)
p,q = cdiv(a,b,c,d)
return p*s,q*s
end
function scaleargs_cdiv(a::Float64, b::Float64, c::Float64, d::Float64, ab::Float64, cd::Float64)
ϵ = eps(Float64)
halfov = 0.5*floatmax(Float64)
twounϵ = floatmin(Float64)*2.0/ϵ
bs = 2.0/(ϵ*ϵ)
# scaling
s = 1.0
if ab >= halfov
a*=0.5; b*=0.5; s*=2.0 # scale down a,b
elseif ab <= twounϵ
a*=bs; b*=bs; s/=bs # scale up a,b
end
if cd >= halfov
c*=0.5; d*=0.5; s*=0.5 # scale down c,d
elseif cd <= twounϵ
c*=bs; d*=bs; s*=bs # scale up c,d
end
return a,b,c,d,s
end
@inline function robust_cdiv1(a::Float64, b::Float64, c::Float64, d::Float64)
r = d/c
t = 1.0/(c+d*r)
p = robust_cdiv2(a,b,c,d,r,t)
q = robust_cdiv2(b,-a,c,d,r,t)
return p,q
end
function robust_cdiv2(a::Float64, b::Float64, c::Float64, d::Float64, r::Float64, t::Float64)
if r != 0
br = b*r
return (br != 0 ? (a+br)*t : a*t + (b*t)*r)
else
return (a + d*(b/c)) * t
end
end
function inv(w::ComplexF64)
c, d = reim(w)
half = 0.5
two = 2.0
cd = max(abs(c), abs(d))
ov = floatmax(c)
un = floatmin(c)
ϵ = eps(Float64)
bs = two/(ϵ*ϵ)
s = 1.0
cd >= half*ov && (c=half*c; d=half*d; s=s*half) # scale down c,d
cd <= un*two/ϵ && (c=c*bs; d=d*bs; s=s*bs ) # scale up c,d
if abs(d)<=abs(c)
r = d/c
t = 1.0/(c+d*r)
p = t
q = -r * t
else
c, d = d, c
r = d/c
t = 1.0/(c+d*r)
p = r * t
q = -t
end
return ComplexF64(p*s,q*s) # undo scaling
end
function ssqs(x::T, y::T) where T<:AbstractFloat
k::Int = 0
ρ = x*x + y*y
if !isfinite(ρ) && (isinf(x) || isinf(y))
ρ = convert(T, Inf)
elseif isinf(ρ) || (ρ==0 && (x!=0 || y!=0)) || ρ<nextfloat(zero(T))/(2*eps(T)^2)
m::T = max(abs(x), abs(y))
k = m==0 ? m : exponent(m)
xk, yk = ldexp(x,-k), ldexp(y,-k)
ρ = xk*xk + yk*yk
end
ρ, k
end
function sqrt(z::Complex{<:AbstractFloat})
x, y = reim(z)
if x==y==0
return Complex(zero(x),y)
end
ρ, k::Int = ssqs(x, y)
if isfinite(x) ρ=ldexp(abs(x),-k)+sqrt(ρ) end
if isodd(k)
k = div(k-1,2)
else
k = div(k,2)-1
ρ += ρ
end
ρ = ldexp(sqrt(ρ),k) #sqrt((abs(z)+abs(x))/2) without over/underflow
ξ = ρ
η = y
if ρ != 0
if isfinite(η) η=(η/ρ)/2 end
if x<0
ξ = abs(η)
η = copysign(ρ,y)
end
end
Complex(ξ,η)
end
sqrt(z::Complex) = sqrt(float(z))
# function sqrt(z::Complex)
# rz = float(real(z))
# iz = float(imag(z))
# r = sqrt((hypot(rz,iz)+abs(rz))/2)
# if r == 0
# return Complex(zero(iz), iz)
# end
# if rz >= 0
# return Complex(r, iz/r/2)
# end
# return Complex(abs(iz)/r/2, copysign(r,iz))
# end
# compute exp(im*theta)
function cis(theta::Real)
s, c = sincos(theta)
Complex(c, s)
end
"""
cis(z)
Return ``\\exp(iz)``.
# Examples
```jldoctest
julia> cis(π) ≈ -1
true
```
"""
function cis(z::Complex)
v = exp(-imag(z))
s, c = sincos(real(z))
Complex(v * c, v * s)
end
"""
angle(z)
Compute the phase angle in radians of a complex number `z`.
# Examples
```jldoctest
julia> rad2deg(angle(1 + im))
45.0
julia> rad2deg(angle(1 - im))
-45.0
julia> rad2deg(angle(-1 - im))
-135.0
```
"""
angle(z::Complex) = atan(imag(z), real(z))
function log(z::Complex{T}) where T<:AbstractFloat
T1::T = 1.25
T2::T = 3
ln2::T = log(convert(T,2)) #0.6931471805599453
x, y = reim(z)
ρ, k = ssqs(x,y)
ax = abs(x)
ay = abs(y)
if ax < ay
θ, β = ax, ay
else
θ, β = ay, ax
end
if k==0 && (0.5 < β*β) && (β <= T1 || ρ < T2)
ρρ = log1p((β-1)*(β+1)+θ*θ)/2
else
ρρ = log(ρ)/2 + k*ln2
end
Complex(ρρ, angle(z))
end
log(z::Complex) = log(float(z))
# function log(z::Complex)
# ar = abs(real(z))
# ai = abs(imag(z))
# if ar < ai
# r = ar/ai
# re = log(ai) + log1p(r*r)/2
# else
# if ar == 0
# re = isnan(ai) ? ai : -inv(ar)
# elseif isinf(ai)
# re = oftype(ar,Inf)
# else
# r = ai/ar
# re = log(ar) + log1p(r*r)/2
# end
# end
# Complex(re, angle(z))
# end
function log10(z::Complex)
a = log(z)
a/log(oftype(real(a),10))
end
function log2(z::Complex)
a = log(z)
a/log(oftype(real(a),2))
end
function exp(z::Complex)
zr, zi = reim(z)
if isnan(zr)
Complex(zr, zi==0 ? zi : zr)
elseif !isfinite(zi)
if zr == Inf
Complex(-zr, oftype(zr,NaN))
elseif zr == -Inf
Complex(-zero(zr), copysign(zero(zi), zi))
else
Complex(oftype(zr,NaN), oftype(zi,NaN))
end
else
er = exp(zr)
if iszero(zi)
Complex(er, zi)
else
s, c = sincos(zi)
Complex(er * c, er * s)
end
end
end
function expm1(z::Complex{T}) where T<:Real
Tf = float(T)
zr,zi = reim(z)
if isnan(zr)
Complex(zr, zi==0 ? zi : zr)
elseif !isfinite(zi)
if zr == Inf
Complex(-zr, oftype(zr,NaN))
elseif zr == -Inf
Complex(-one(zr), copysign(zero(zi), zi))
else
Complex(oftype(zr,NaN), oftype(zi,NaN))
end
else
erm1 = expm1(zr)
if zi == 0
Complex(erm1, zi)
else
er = erm1+one(erm1)
if isfinite(er)
wr = erm1 - 2 * er * (sin(convert(Tf, 0.5) * zi))^2
return Complex(wr, er * sin(zi))
else
s, c = sincos(zi)
return Complex(er * c, er * s)
end
end
end
end
function log1p(z::Complex{T}) where T
zr,zi = reim(z)
if isfinite(zr)
isinf(zi) && return log(z)
# This is based on a well-known trick for log1p of real z,
# allegedly due to Kahan, only modified to handle real(u) <= 0
# differently to avoid inaccuracy near z==-2 and for correct branch cut
u = one(float(T)) + z
u == 1 ? convert(typeof(u), z) : real(u) <= 0 ? log(u) : log(u)*z/(u-1)
elseif isnan(zr)
Complex(zr, zr)
elseif isfinite(zi)
Complex(T(Inf), copysign(zr > 0 ? zero(T) : convert(T, pi), zi))
else
Complex(T(Inf), T(NaN))
end
end
function exp2(z::Complex{T}) where T<:AbstractFloat
er = exp2(real(z))
theta = imag(z) * log(convert(T, 2))
s, c = sincos(theta)
Complex(er * c, er * s)
end
exp2(z::Complex) = exp2(float(z))
function exp10(z::Complex{T}) where T<:AbstractFloat
er = exp10(real(z))
theta = imag(z) * log(convert(T, 10))
s, c = sincos(theta)
Complex(er * c, er * s)
end
exp10(z::Complex) = exp10(float(z))
# _cpow helper function to avoid method ambiguity with ^(::Complex,::Real)
function _cpow(z::Union{T,Complex{T}}, p::Union{T,Complex{T}}) where {T<:AbstractFloat}
if isreal(p)
pᵣ = real(p)
if isinteger(pᵣ) && abs(pᵣ) < typemax(Int32)
# |p| < typemax(Int32) serves two purposes: it prevents overflow
# when converting p to Int, and it also turns out to be roughly
# the crossover point for exp(p*log(z)) or similar to be faster.
if iszero(pᵣ) # fix signs of imaginary part for z^0
zer = flipsign(copysign(zero(T),pᵣ), imag(z))
return Complex(one(T), zer)
end
ip = convert(Int, pᵣ)
if isreal(z)
zᵣ = real(z)
if ip < 0
iszero(z) && return Complex(T(NaN),T(NaN))
re = power_by_squaring(inv(zᵣ), -ip)
im = -imag(z)
else
re = power_by_squaring(zᵣ, ip)
im = imag(z)
end
# slightly tricky to get the correct sign of zero imag. part
return Complex(re, ifelse(iseven(ip) & signbit(zᵣ), -im, im))
else
return ip < 0 ? power_by_squaring(inv(z), -ip) : power_by_squaring(z, ip)
end
elseif isreal(z)
# (note: if both z and p are complex with ±0.0 imaginary parts,
# the sign of the ±0.0 imaginary part of the result is ambiguous)
if iszero(real(z))
return pᵣ > 0 ? complex(z) : Complex(T(NaN),T(NaN)) # 0 or NaN+NaN*im
elseif real(z) > 0
return Complex(real(z)^pᵣ, z isa Real ? ifelse(real(z) < 1, -imag(p), imag(p)) : flipsign(imag(z), pᵣ))
else
zᵣ = real(z)
rᵖ = (-zᵣ)^pᵣ
if isfinite(pᵣ)
# figuring out the sign of 0.0 when p is a complex number
# with zero imaginary part and integer/2 real part could be
# improved here, but it's not clear if it's worth it…
return rᵖ * complex(cospi(pᵣ), flipsign(sinpi(pᵣ),imag(z)))
else
iszero(rᵖ) && return zero(Complex{T}) # no way to get correct signs of 0.0
return Complex(T(NaN),T(NaN)) # non-finite phase angle or NaN input
end
end
else
rᵖ = abs(z)^pᵣ
ϕ = pᵣ*angle(z)
end
elseif isreal(z)
iszero(z) && return real(p) > 0 ? complex(z) : Complex(T(NaN),T(NaN)) # 0 or NaN+NaN*im
zᵣ = real(z)
pᵣ, pᵢ = reim(p)
if zᵣ > 0
rᵖ = zᵣ^pᵣ
ϕ = pᵢ*log(zᵣ)
else
r = -zᵣ
θ = copysign(T(π),imag(z))
rᵖ = r^pᵣ * exp(-pᵢ*θ)
ϕ = pᵣ*θ + pᵢ*log(r)
end
else
pᵣ, pᵢ = reim(p)
r = abs(z)
θ = angle(z)
rᵖ = r^pᵣ * exp(-pᵢ*θ)
ϕ = pᵣ*θ + pᵢ*log(r)
end
if isfinite(ϕ)
return rᵖ * cis(ϕ)
else
iszero(rᵖ) && return zero(Complex{T}) # no way to get correct signs of 0.0
return Complex(T(NaN),T(NaN)) # non-finite phase angle or NaN input
end
end
_cpow(z, p) = _cpow(float(z), float(p))
^(z::Complex{T}, p::Complex{T}) where T<:Real = _cpow(z, p)
^(z::Complex{T}, p::T) where T<:Real = _cpow(z, p)
^(z::T, p::Complex{T}) where T<:Real = _cpow(z, p)
^(z::Complex, n::Bool) = n ? z : one(z)
^(z::Complex, n::Integer) = z^Complex(n)
^(z::Complex{<:AbstractFloat}, n::Bool) = n ? z : one(z) # to resolve ambiguity
^(z::Complex{<:Integer}, n::Bool) = n ? z : one(z) # to resolve ambiguity
^(z::Complex{<:AbstractFloat}, n::Integer) =
n>=0 ? power_by_squaring(z,n) : power_by_squaring(inv(z),-n)
^(z::Complex{<:Integer}, n::Integer) = power_by_squaring(z,n) # DomainError for n<0
function ^(z::Complex{T}, p::S) where {T<:Real,S<:Real}
P = promote_type(T,S)
return Complex{P}(z) ^ P(p)
end
function ^(z::T, p::Complex{S}) where {T<:Real,S<:Real}
P = promote_type(T,S)
return P(z) ^ Complex{P}(p)
end
function sin(z::Complex{T}) where T
F = float(T)
zr, zi = reim(z)
if zr == 0
Complex(F(zr), sinh(zi))
elseif !isfinite(zr)
if zi == 0 || isinf(zi)
Complex(F(NaN), F(zi))
else
Complex(F(NaN), F(NaN))
end
else
s, c = sincos(zr)
Complex(s * cosh(zi), c * sinh(zi))
end
end
function cos(z::Complex{T}) where T
F = float(T)
zr, zi = reim(z)
if zr == 0
Complex(cosh(zi), isnan(zi) ? F(zr) : -flipsign(F(zr),zi))
elseif !isfinite(zr)
if zi == 0
Complex(F(NaN), isnan(zr) ? zero(F) : -flipsign(F(zi),zr))
elseif isinf(zi)
Complex(F(Inf), F(NaN))
else
Complex(F(NaN), F(NaN))
end
else
s, c = sincos(zr)
Complex(c * cosh(zi), -s * sinh(zi))
end
end
function tan(z::Complex)
zr, zi = reim(z)
w = tanh(Complex(-zi, zr))
Complex(imag(w), -real(w))
end
function asin(z::Complex)
zr, zi = reim(z)
if isinf(zr) && isinf(zi)
return Complex(copysign(oftype(zr,pi)/4, zr),zi)
elseif isnan(zi) && isinf(zr)
return Complex(zi, oftype(zr, Inf))
end
ξ = zr == 0 ? zr :
!isfinite(zr) ? oftype(zr,pi)/2 * sign(zr) :
atan(zr, real(sqrt(1-z)*sqrt(1+z)))
η = asinh(copysign(imag(sqrt(conj(1-z))*sqrt(1+z)), imag(z)))
Complex(ξ,η)
end
function acos(z::Complex{<:AbstractFloat})
zr, zi = reim(z)
if isnan(zr)
if isinf(zi) return Complex(zr, -zi)
else return Complex(zr, zr) end
elseif isnan(zi)
if isinf(zr) return Complex(zi, abs(zr))
elseif zr==0 return Complex(oftype(zr,pi)/2, zi)
else return Complex(zi, zi) end
elseif zr==zi==0
return Complex(oftype(zr,pi)/2, -zi)
elseif zr==Inf && zi===0.0
return Complex(zi, -zr)
elseif zr==-Inf && zi===-0.0
return Complex(oftype(zi,pi), -zr)
end
ξ = 2*atan(real(sqrt(1-z)), real(sqrt(1+z)))
η = asinh(imag(sqrt(conj(1+z))*sqrt(1-z)))
if isinf(zr) && isinf(zi) ξ -= oftype(η,pi)/4 * sign(zr) end
Complex(ξ,η)
end
acos(z::Complex) = acos(float(z))
function atan(z::Complex)
w = atanh(Complex(-imag(z),real(z)))
Complex(imag(w),-real(w))
end
function sinh(z::Complex)
zr, zi = reim(z)
w = sin(Complex(zi, zr))
Complex(imag(w),real(w))
end
function cosh(z::Complex)
zr, zi = reim(z)
cos(Complex(zi,-zr))
end
function tanh(z::Complex{T}) where T<:AbstractFloat
Ω = prevfloat(typemax(T))
ξ, η = reim(z)
if isnan(ξ) && η==0 return Complex(ξ, η) end
if 4*abs(ξ) > asinh(Ω) #Overflow?
Complex(copysign(one(T),ξ),
copysign(zero(T),η*(isfinite(η) ? sin(2*abs(η)) : one(η))))
else
t = tan(η)
β = 1+t*t #sec(η)^2
s = sinh(ξ)
ρ = sqrt(1 + s*s) #cosh(ξ)
if isinf(t)
Complex(ρ/s,1/t)
else
Complex(β*ρ*s,t)/(1+β*s*s)
end
end
end
tanh(z::Complex) = tanh(float(z))
function asinh(z::Complex)
w = asin(Complex(-imag(z),real(z)))
Complex(imag(w),-real(w))
end
function acosh(z::Complex)
zr, zi = reim(z)
if isnan(zr) || isnan(zi)
if isinf(zr) || isinf(zi)
return Complex(oftype(zr, Inf), oftype(zi, NaN))
else
return Complex(oftype(zr, NaN), oftype(zi, NaN))
end
elseif zr==-Inf && zi===-0.0 #Edge case is wrong - WHY?
return Complex(oftype(zr,Inf), oftype(zi, -pi))
end
ξ = asinh(real(sqrt(conj(z-1))*sqrt(z+1)))
η = 2*atan(imag(sqrt(z-1)),real(sqrt(z+1)))
if isinf(zr) && isinf(zi)
η -= oftype(η,pi)/4 * sign(zi) * sign(zr)
end
Complex(ξ, η)
end
function atanh(z::Complex{T}) where T<:AbstractFloat
Ω = prevfloat(typemax(T))
θ = sqrt(Ω)/4
ρ = 1/θ
x, y = reim(z)
ax = abs(x)
ay = abs(y)
if ax > θ || ay > θ #Prevent overflow
if isnan(y)
if isinf(x)
return Complex(copysign(zero(x),x), y)
else
return Complex(real(1/z), y)
end
end
if isinf(y)
return Complex(copysign(zero(x),x), copysign(oftype(y,pi)/2, y))
end
return Complex(real(1/z), copysign(oftype(y,pi)/2, y))
elseif ax==1
if y == 0
ξ = copysign(oftype(x,Inf),x)
η = zero(y)
else
ym = ay+ρ
ξ = log(sqrt(sqrt(4+y*y))/sqrt(ym))
η = copysign(oftype(y,pi)/2 + atan(ym/2), y)/2
end
else #Normal case
ysq = (ay+ρ)^2
if x == 0
ξ = x
else
ξ = log1p(4x/((1-x)^2 + ysq))/4
end
η = angle(Complex((1-x)*(1+x)-ysq, 2y))/2
end
Complex(ξ, η)
end
atanh(z::Complex) = atanh(float(z))
#Rounding complex numbers
#Requires two different RoundingModes for the real and imaginary components
"""
round(z::Complex[, RoundingModeReal, [RoundingModeImaginary]])
round(z::Complex[, RoundingModeReal, [RoundingModeImaginary]]; digits=, base=10)
round(z::Complex[, RoundingModeReal, [RoundingModeImaginary]]; sigdigits=, base=10)
Return the nearest integral value of the same type as the complex-valued `z` to `z`,
breaking ties using the specified [`RoundingMode`](@ref)s. The first
[`RoundingMode`](@ref) is used for rounding the real components while the
second is used for rounding the imaginary components.
# Example
```jldoctest
julia> round(3.14 + 4.5im)
3.0 + 4.0im
```
"""
function round(z::Complex, rr::RoundingMode=RoundNearest, ri::RoundingMode=rr; kwargs...)
Complex(round(real(z), rr; kwargs...),
round(imag(z), ri; kwargs...))
end