-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
broadcast.jl
885 lines (772 loc) · 34.8 KB
/
broadcast.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
# This file is a part of Julia. License is MIT: https://julialang.org/license
module Broadcast
using Base.Cartesian
using Base: Indices, OneTo, linearindices, tail, to_shape,
_msk_end, unsafe_bitgetindex, bitcache_chunks, bitcache_size, dumpbitcache,
isoperator
import Base: broadcast, broadcast!
export BroadcastStyle, broadcast_indices, broadcast_similar,
broadcast_getindex, broadcast_setindex!, dotview, @__dot__
### Objects with customized broadcasting behavior should declare a BroadcastStyle
"""
`BroadcastStyle` is an abstract type and trait-function used to determine behavior of
objects under broadcasting. `BroadcastStyle(typeof(x))` returns the style associated
with `x`. To customize the broadcasting behavior of a type, one can declare a style
by defining a type/method pair
struct MyContainerStyle <: BroadcastStyle end
Base.BroadcastStyle(::Type{<:MyContainer}) = MyContainerStyle()
One then writes method(s) (at least [`broadcast_similar`](@ref)) operating on
`MyContainerStyle`. There are also several pre-defined subtypes of `BroadcastStyle`
that you may be able to leverage; see the
[Interfaces chapter](@ref man-interfaces-broadcasting) for more information.
"""
abstract type BroadcastStyle end
"""
`Broadcast.Style{C}()` defines a [`BroadcastStyle`](@ref) signaling through the type
parameter `C`. You can use this as an alternative to creating custom subtypes of `BroadcastStyle`,
for example
Base.BroadcastStyle(::Type{<:MyContainer}) = Broadcast.Style{MyContainer}()
There is a pre-defined [`broadcast_similar`](@ref) method
broadcast_similar(f, ::Style{C}, ::Type{ElType}, inds, args...) =
similar(C, ElType, inds)
Naturally you can specialize this for your particular `C` (e.g., `MyContainer`).
"""
struct Style{T} <: BroadcastStyle end
BroadcastStyle(::Type{<:Tuple}) = Style{Tuple}()
struct Unknown <: BroadcastStyle end
BroadcastStyle(::Type{Union{}}) = Unknown() # ambiguity resolution
"""
`Broadcast.Scalar()` is a [`BroadcastStyle`](@ref) indicating that an object is not
treated as a container for the purposes of broadcasting. This is the default for objects
that have not customized `BroadcastStyle`.
"""
struct Scalar <: BroadcastStyle end
BroadcastStyle(::Type) = Scalar()
BroadcastStyle(::Type{<:Ptr}) = Scalar()
"""
`Broadcast.AbstractArrayStyle{N} <: BroadcastStyle` is the abstract supertype for any style
associated with an `AbstractArray` type.
The `N` parameter is the dimensionality, which can be handy for AbstractArray types
that only support specific dimensionalities:
struct SparseMatrixStyle <: Broadcast.AbstractArrayStyle{2} end
Base.BroadcastStyle(::Type{<:SparseMatrixCSC}) = SparseMatrixStyle()
For AbstractArray types that support arbitrary dimensionality, `N` can be set to `Any`:
struct MyArrayStyle <: Broadcast.AbstractArrayStyle{Any} end
Base.BroadcastStyle(::Type{<:MyArray}) = MyArrayStyle()
In cases where you want to be able to mix multiple `AbstractArrayStyle`s and keep track
of dimensionality, your style needs to support a `Val` constructor:
struct MyArrayStyleDim{N} <: Broadcast.AbstractArrayStyle{N} end
(::Type{<:MyArrayStyleDim})(::Val{N}) where N = MyArrayStyleDim{N}()
Note that if two or more `AbstractArrayStyle` subtypes conflict, broadcasting machinery
will fall back to producing `Array`s. If this is undesirable, you may need to
define binary [`BroadcastStyle`](@ref) rules to control the output type.
See also [`Broadcast.DefaultArrayStyle`](@ref).
"""
abstract type AbstractArrayStyle{N} <: BroadcastStyle end
"""
`Broadcast.ArrayStyle{MyArrayType}()` is a [`BroadcastStyle`](@ref) indicating that an object
behaves as an array for broadcasting. It presents a simple way to construct
[`Broadcast.AbstractArrayStyle`](@ref)s for specific `AbstractArray` container types.
Broadcast styles created this way lose track of dimensionality; if keeping track is important
for your type, you should create your own custom [`Broadcast.AbstractArrayStyle`](@ref).
"""
struct ArrayStyle{A<:AbstractArray} <: AbstractArrayStyle{Any} end
(::Type{<:ArrayStyle{A}})(::Val) where A = A()
"""
`Broadcast.DefaultArrayStyle{N}()` is a [`BroadcastStyle`](@ref) indicating that an object
behaves as an `N`-dimensional array for broadcasting. Specifically, `DefaultArrayStyle` is
used for any
AbstractArray type that hasn't defined a specialized style, and in the absence of
overrides from other `broadcast` arguments the resulting output type is `Array`.
When there are multiple inputs to `broadcast`, `DefaultArrayStyle` "wins" over [`Broadcast.Scalar`](@ref)
but "loses" to any other [`Broadcast.ArrayStyle`](@ref).
"""
struct DefaultArrayStyle{N} <: AbstractArrayStyle{N} end
(::Type{<:DefaultArrayStyle})(::Val{N}) where N = DefaultArrayStyle{N}()
const DefaultVectorStyle = DefaultArrayStyle{1}
const DefaultMatrixStyle = DefaultArrayStyle{2}
BroadcastStyle(::Type{<:AbstractArray{T,N}}) where {T,N} = DefaultArrayStyle{N}()
BroadcastStyle(::Type{<:Ref}) = DefaultArrayStyle{0}()
# `ArrayConflict` is an internal type signaling that two or more different `AbstractArrayStyle`
# objects were supplied as arguments, and that no rule was defined for resolving the
# conflict. The resulting output is `Array`. While this is the same output type
# produced by `DefaultArrayStyle`, `ArrayConflict` "poisons" the BroadcastStyle so that
# 3 or more arguments still return an `ArrayConflict`.
struct ArrayConflict <: AbstractArrayStyle{Any} end
### Binary BroadcastStyle rules
"""
BroadcastStyle(::Style1, ::Style2) = Style3()
Indicate how to resolve different `BroadcastStyle`s. For example,
Broadcast.rule(::Primary, ::Secondary) = Primary()
would indicate that style `Primary` has precedence over `Secondary`.
You do not have to (and generally should not) define both argument orders.
The result does not have to be one of the input arguments, it could be a third type.
Please see the [Interfaces chapter](@ref man-interfaces-broadcasting) of the manual for
more information.
"""
BroadcastStyle(::S, ::S) where S<:BroadcastStyle = S() # homogeneous types preserved
# Fall back to Unknown. This is necessary to implement argument-swapping
BroadcastStyle(::BroadcastStyle, ::BroadcastStyle) = Unknown()
# Unknown loses to everything
BroadcastStyle(::Unknown, ::Unknown) = Unknown()
BroadcastStyle(::S, ::Unknown) where S<:BroadcastStyle = S()
# Precedence rules
BroadcastStyle(::Style{Tuple}, ::Scalar) = Style{Tuple}()
BroadcastStyle(a::AbstractArrayStyle{0}, ::Style{Tuple}) = typeof(a)(Val(1))
BroadcastStyle(a::AbstractArrayStyle, ::Style{Tuple}) = a
BroadcastStyle(a::AbstractArrayStyle, ::Scalar) = a
BroadcastStyle(::A, ::A) where A<:ArrayStyle = A()
BroadcastStyle(::ArrayStyle, ::ArrayStyle) = Unknown()
BroadcastStyle(::A, ::A) where A<:AbstractArrayStyle = A()
Base.@pure function BroadcastStyle(a::A, b::B) where {A<:AbstractArrayStyle{M},B<:AbstractArrayStyle{N}} where {M,N}
if Base.typename(A).wrapper == Base.typename(B).wrapper
return A(_max(Val(M),Val(N)))
end
Unknown()
end
# Any specific array type beats DefaultArrayStyle
BroadcastStyle(a::AbstractArrayStyle{Any}, ::DefaultArrayStyle) = a
BroadcastStyle(a::AbstractArrayStyle{N}, ::DefaultArrayStyle{N}) where N = a
BroadcastStyle(a::AbstractArrayStyle{M}, ::DefaultArrayStyle{N}) where {M,N} =
typeof(a)(_max(Val(M),Val(N)))
# FIXME
# The following definitions are necessary to limit SparseArray broadcasting to "plain Arrays"
# (see https://github.com/JuliaLang/julia/pull/23939#pullrequestreview-72075382).
# They should be deleted once the sparse broadcast infrastucture is capable of handling
# arbitrary AbstractArrays.
struct VectorStyle <: AbstractArrayStyle{1} end
struct MatrixStyle <: AbstractArrayStyle{2} end
const VMStyle = Union{VectorStyle,MatrixStyle}
# These lose to DefaultArrayStyle
VectorStyle(::Val{N}) where N = DefaultArrayStyle{N}()
MatrixStyle(::Val{N}) where N = DefaultArrayStyle{N}()
BroadcastStyle(::Type{<:Vector}) = VectorStyle()
BroadcastStyle(::Type{<:Matrix}) = MatrixStyle()
BroadcastStyle(::MatrixStyle, ::VectorStyle) = MatrixStyle()
BroadcastStyle(a::AbstractArrayStyle{Any}, ::VectorStyle) = a
BroadcastStyle(a::AbstractArrayStyle{Any}, ::MatrixStyle) = a
BroadcastStyle(a::AbstractArrayStyle{N}, ::VectorStyle) where N = typeof(a)(_max(Val(N), Val(1)))
BroadcastStyle(a::AbstractArrayStyle{N}, ::MatrixStyle) where N = typeof(a)(_max(Val(N), Val(2)))
BroadcastStyle(::VectorStyle, ::DefaultArrayStyle{N}) where N = DefaultArrayStyle(_max(Val(N), Val(1)))
BroadcastStyle(::MatrixStyle, ::DefaultArrayStyle{N}) where N = DefaultArrayStyle(_max(Val(N), Val(2)))
# to avoid the VectorStyle(::Val) constructor we also need the following
BroadcastStyle(::VectorStyle, ::MatrixStyle) = MatrixStyle()
# end FIXME
## Allocating the output container
"""
broadcast_similar(f, ::BroadcastStyle, ::Type{ElType}, inds, As...)
Allocate an output object for [`broadcast`](@ref), appropriate for the indicated
[`Broadcast.BroadcastStyle`](@ref). `ElType` and `inds` specify the desired element type and indices of the
container.
`f` is the broadcast operation, and `As...` are the arguments supplied to `broadcast`.
"""
broadcast_similar(f, ::DefaultArrayStyle{N}, ::Type{ElType}, inds::Indices{N}, As...) where {N,ElType} =
similar(Array{ElType}, inds)
broadcast_similar(f, ::DefaultArrayStyle{N}, ::Type{Bool}, inds::Indices{N}, As...) where N =
similar(BitArray, inds)
# In cases of conflict we fall back on Array
broadcast_similar(f, ::ArrayConflict, ::Type{ElType}, inds::Indices, As...) where ElType =
similar(Array{ElType}, inds)
broadcast_similar(f, ::ArrayConflict, ::Type{Bool}, inds::Indices, As...) =
similar(BitArray, inds)
# FIXME: delete when we get rid of VectorStyle and MatrixStyle
broadcast_similar(f, ::VectorStyle, ::Type{ElType}, inds::Indices{1}, As...) where ElType =
similar(Vector{ElType}, inds)
broadcast_similar(f, ::MatrixStyle, ::Type{ElType}, inds::Indices{2}, As...) where ElType =
similar(Matrix{ElType}, inds)
broadcast_similar(f, ::VectorStyle, ::Type{Bool}, inds::Indices{1}, As...) =
similar(BitArray, inds)
broadcast_similar(f, ::MatrixStyle, ::Type{Bool}, inds::Indices{2}, As...) =
similar(BitArray, inds)
# end FIXME
## Computing the result's indices. Most types probably won't need to specialize this.
broadcast_indices() = ()
broadcast_indices(::Type{T}) where T = ()
broadcast_indices(A) = broadcast_indices(combine_styles(A), A)
broadcast_indices(::Scalar, A) = ()
broadcast_indices(::Style{Tuple}, A) = (OneTo(length(A)),)
broadcast_indices(::DefaultArrayStyle{0}, A::Ref) = ()
broadcast_indices(::AbstractArrayStyle, A) = Base.axes(A)
"""
Base.broadcast_indices(::SrcStyle, A)
Compute the indices for objects `A` with [`BroadcastStyle`](@ref) `SrcStyle`.
If needed, you can specialize this method for your styles.
You should only need to provide a custom implementation for non-AbstractArrayStyles.
"""
broadcast_indices
### End of methods that users will typically have to specialize ###
## Broadcasting utilities ##
# special cases defined for performance
broadcast(f, x::Number...) = f(x...)
@inline broadcast(f, t::NTuple{N,Any}, ts::Vararg{NTuple{N,Any}}) where {N} = map(f, t, ts...)
## logic for deciding the BroadcastStyle
# Dimensionality: computing max(M,N) in the type domain so we preserve inferrability
_max(V1::Val{Any}, V2::Val{Any}) = Val(Any)
_max(V1::Val{Any}, V2::Val{N}) where N = Val(Any)
_max(V1::Val{N}, V2::Val{Any}) where N = Val(Any)
_max(V1::Val, V2::Val) = __max(longest(ntuple(identity, V1), ntuple(identity, V2)))
__max(::NTuple{N,Bool}) where N = Val(N)
longest(t1::Tuple, t2::Tuple) = (true, longest(Base.tail(t1), Base.tail(t2))...)
longest(::Tuple{}, t2::Tuple) = (true, longest((), Base.tail(t2))...)
longest(t1::Tuple, ::Tuple{}) = (true, longest(Base.tail(t1), ())...)
longest(::Tuple{}, ::Tuple{}) = ()
# combine_styles operates on values (arbitrarily many)
combine_styles(c) = result_style(BroadcastStyle(typeof(c)))
combine_styles(c1, c2) = result_style(combine_styles(c1), combine_styles(c2))
@inline combine_styles(c1, c2, cs...) = result_style(combine_styles(c1), combine_styles(c2, cs...))
# result_style works on types (singletons and pairs), and leverages `BroadcastStyle`
result_style(s::BroadcastStyle) = s
result_style(s1::S, s2::S) where S<:BroadcastStyle = S()
# Test both orders so users typically only have to declare one order
result_style(s1, s2) = result_join(s1, s2, BroadcastStyle(s1, s2), BroadcastStyle(s2, s1))
# result_join is the final arbiter. Because `BroadcastStyle` for undeclared pairs results in Unknown,
# we defer to any case where the result of `BroadcastStyle` is known.
result_join(::Any, ::Any, ::Unknown, ::Unknown) = Unknown()
result_join(::Any, ::Any, ::Unknown, s::BroadcastStyle) = s
result_join(::Any, ::Any, s::BroadcastStyle, ::Unknown) = s
# For AbstractArray types with specialized broadcasting and undefined precedence rules,
# we have to signal conflict. Because ArrayConflict is a subtype of AbstractArray,
# this will "poison" any future operations (if we instead returned `DefaultArrayStyle`, then for
# 3-array broadcasting the returned type would depend on argument order).
result_join(::AbstractArrayStyle, ::AbstractArrayStyle, ::Unknown, ::Unknown) =
ArrayConflict()
# Fallbacks in case users define `rule` for both argument-orders (not recommended)
result_join(::Any, ::Any, ::S, ::S) where S<:BroadcastStyle = S()
@noinline function result_join(::S, ::T, ::U, ::V) where {S,T,U,V}
error("""
conflicting broadcast rules defined
Broadcast.BroadcastStyle(::$S, ::$T) = $U()
Broadcast.BroadcastStyle(::$T, ::$S) = $V()
One of these should be undefined (and thus return Broadcast.Unknown).""")
end
# Indices utilities
combine_indices(A, B...) = broadcast_shape(broadcast_indices(A), combine_indices(B...))
combine_indices(A) = broadcast_indices(A)
# shape (i.e., tuple-of-indices) inputs
broadcast_shape(shape::Tuple) = shape
broadcast_shape(shape::Tuple, shape1::Tuple, shapes::Tuple...) = broadcast_shape(_bcs(shape, shape1), shapes...)
# _bcs consolidates two shapes into a single output shape
_bcs(::Tuple{}, ::Tuple{}) = ()
_bcs(::Tuple{}, newshape::Tuple) = (newshape[1], _bcs((), tail(newshape))...)
_bcs(shape::Tuple, ::Tuple{}) = (shape[1], _bcs(tail(shape), ())...)
function _bcs(shape::Tuple, newshape::Tuple)
return (_bcs1(shape[1], newshape[1]), _bcs(tail(shape), tail(newshape))...)
end
# _bcs1 handles the logic for a single dimension
_bcs1(a::Integer, b::Integer) = a == 1 ? b : (b == 1 ? a : (a == b ? a : throw(DimensionMismatch("arrays could not be broadcast to a common size"))))
_bcs1(a::Integer, b) = a == 1 ? b : (first(b) == 1 && last(b) == a ? b : throw(DimensionMismatch("arrays could not be broadcast to a common size")))
_bcs1(a, b::Integer) = _bcs1(b, a)
_bcs1(a, b) = _bcsm(b, a) ? b : (_bcsm(a, b) ? a : throw(DimensionMismatch("arrays could not be broadcast to a common size")))
# _bcsm tests whether the second index is consistent with the first
_bcsm(a, b) = a == b || length(b) == 1
_bcsm(a, b::Number) = b == 1
_bcsm(a::Number, b::Number) = a == b || b == 1
## Check that all arguments are broadcast compatible with shape
# comparing one input against a shape
check_broadcast_shape(shp) = nothing
check_broadcast_shape(shp, ::Tuple{}) = nothing
check_broadcast_shape(::Tuple{}, ::Tuple{}) = nothing
check_broadcast_shape(::Tuple{}, Ashp::Tuple) = throw(DimensionMismatch("cannot broadcast array to have fewer dimensions"))
function check_broadcast_shape(shp, Ashp::Tuple)
_bcsm(shp[1], Ashp[1]) || throw(DimensionMismatch("array could not be broadcast to match destination"))
check_broadcast_shape(tail(shp), tail(Ashp))
end
check_broadcast_indices(shp, A) = check_broadcast_shape(shp, broadcast_indices(A))
# comparing many inputs
@inline function check_broadcast_indices(shp, A, As...)
check_broadcast_indices(shp, A)
check_broadcast_indices(shp, As...)
end
## Indexing manipulations
# newindex(I, keep, Idefault) replaces a CartesianIndex `I` with something that
# is appropriate for a particular broadcast array/scalar. `keep` is a
# NTuple{N,Bool}, where keep[d] == true means that one should preserve
# I[d]; if false, replace it with Idefault[d].
# If dot-broadcasting were already defined, this would be `ifelse.(keep, I, Idefault)`.
@inline newindex(I::CartesianIndex, keep, Idefault) = CartesianIndex(_newindex(I.I, keep, Idefault))
@inline _newindex(I, keep, Idefault) =
(ifelse(keep[1], I[1], Idefault[1]), _newindex(tail(I), tail(keep), tail(Idefault))...)
@inline _newindex(I, keep::Tuple{}, Idefault) = () # truncate if keep is shorter than I
# newindexer(shape, A) generates `keep` and `Idefault` (for use by
# `newindex` above) for a particular array `A`, given the
# broadcast indices `shape`
# `keep` is equivalent to map(==, axes(A), shape) (but see #17126)
@inline newindexer(shape, A) = shapeindexer(shape, broadcast_indices(A))
@inline shapeindexer(shape, indsA::Tuple{}) = (), ()
@inline function shapeindexer(shape, indsA::Tuple)
ind1 = indsA[1]
keep, Idefault = shapeindexer(tail(shape), tail(indsA))
(shape[1] == ind1, keep...), (first(ind1), Idefault...)
end
# Equivalent to map(x->newindexer(shape, x), As) (but see #17126)
map_newindexer(shape, ::Tuple{}) = (), ()
@inline function map_newindexer(shape, As)
A1 = As[1]
keeps, Idefaults = map_newindexer(shape, tail(As))
keep, Idefault = newindexer(shape, A1)
(keep, keeps...), (Idefault, Idefaults...)
end
@inline function map_newindexer(shape, A, Bs)
keeps, Idefaults = map_newindexer(shape, Bs)
keep, Idefault = newindexer(shape, A)
(keep, keeps...), (Idefault, Idefaults...)
end
Base.@propagate_inbounds _broadcast_getindex(::Type{T}, I) where T = T
Base.@propagate_inbounds _broadcast_getindex(A, I) = _broadcast_getindex(combine_styles(A), A, I)
Base.@propagate_inbounds _broadcast_getindex(::DefaultArrayStyle{0}, A::Ref, I) = A[]
Base.@propagate_inbounds _broadcast_getindex(::Union{Unknown,Scalar}, A, I) = A
Base.@propagate_inbounds _broadcast_getindex(::Any, A, I) = A[I]
Base.@propagate_inbounds _broadcast_getindex(::Style{Tuple}, A::Tuple{Any}, I) = A[1]
## Broadcasting core
# nargs encodes the number of As arguments (which matches the number
# of keeps). The first two type parameters are to ensure specialization.
@generated function _broadcast!(f, B::AbstractArray, keeps::K, Idefaults::ID, A::AT, Bs::BT, ::Val{N}, iter) where {K,ID,AT,BT,N}
nargs = N + 1
quote
$(Expr(:meta, :inline))
# destructure the keeps and As tuples
A_1 = A
@nexprs $N i->(A_{i+1} = Bs[i])
@nexprs $nargs i->(keep_i = keeps[i])
@nexprs $nargs i->(Idefault_i = Idefaults[i])
@simd for I in iter
# reverse-broadcast the indices
@nexprs $nargs i->(I_i = newindex(I, keep_i, Idefault_i))
# extract array values
@nexprs $nargs i->(@inbounds val_i = _broadcast_getindex(A_i, I_i))
# call the function and store the result
result = @ncall $nargs f val
@inbounds B[I] = result
end
return B
end
end
# For BitArray outputs, we cache the result in a "small" Vector{Bool},
# and then copy in chunks into the output
@generated function _broadcast!(f, B::BitArray, keeps::K, Idefaults::ID, A::AT, Bs::BT, ::Val{N}, iter) where {K,ID,AT,BT,N}
nargs = N + 1
quote
$(Expr(:meta, :inline))
# destructure the keeps and As tuples
A_1 = A
@nexprs $N i->(A_{i+1} = Bs[i])
@nexprs $nargs i->(keep_i = keeps[i])
@nexprs $nargs i->(Idefault_i = Idefaults[i])
C = Vector{Bool}(uninitialized, bitcache_size)
Bc = B.chunks
ind = 1
cind = 1
@simd for I in iter
# reverse-broadcast the indices
@nexprs $nargs i->(I_i = newindex(I, keep_i, Idefault_i))
# extract array values
@nexprs $nargs i->(@inbounds val_i = _broadcast_getindex(A_i, I_i))
# call the function and store the result
@inbounds C[ind] = @ncall $nargs f val
ind += 1
if ind > bitcache_size
dumpbitcache(Bc, cind, C)
cind += bitcache_chunks
ind = 1
end
end
if ind > 1
@inbounds C[ind:bitcache_size] = false
dumpbitcache(Bc, cind, C)
end
return B
end
end
"""
broadcast!(f, dest, As...)
Like [`broadcast`](@ref), but store the result of
`broadcast(f, As...)` in the `dest` array.
Note that `dest` is only used to store the result, and does not supply
arguments to `f` unless it is also listed in the `As`,
as in `broadcast!(f, A, A, B)` to perform `A[:] = broadcast(f, A, B)`.
"""
@inline broadcast!(f::Tf, dest, As::Vararg{Any,N}) where {Tf,N} = broadcast!(f, dest, combine_styles(As...), As...)
@inline broadcast!(f::Tf, dest, ::BroadcastStyle, As::Vararg{Any,N}) where {Tf,N} = broadcast!(f, dest, nothing, As...)
# Default behavior (separated out so that it can be called by users who want to extend broadcast!).
@inline function broadcast!(f, dest, ::Nothing, As::Vararg{Any, N}) where N
if f isa typeof(identity) && N == 1
A = As[1]
if A isa AbstractArray && Base.axes(dest) == Base.axes(A)
return copyto!(dest, A)
end
end
_broadcast!(f, dest, As...)
return dest
end
# Optimization for the all-Scalar case.
@inline function broadcast!(f, dest, ::Scalar, As::Vararg{Any, N}) where N
if dest isa AbstractArray
if f isa typeof(identity) && N == 1
return fill!(dest, As[1])
else
@inbounds for I in eachindex(dest)
dest[I] = f(As...)
end
return dest
end
end
_broadcast!(f, dest, As...)
return dest
end
# This indirection allows size-dependent implementations.
@inline function _broadcast!(f, C, A, Bs::Vararg{Any,N}) where N
shape = broadcast_indices(C)
@boundscheck check_broadcast_indices(shape, A, Bs...)
keeps, Idefaults = map_newindexer(shape, A, Bs)
iter = CartesianIndices(shape)
_broadcast!(f, C, keeps, Idefaults, A, Bs, Val(N), iter)
return C
end
# broadcast with element type adjusted on-the-fly. This widens the element type of
# B as needed (allocating a new container and copying previously-computed values) to
# accommodate any incompatible new elements.
@generated function _broadcast!(f, B::AbstractArray, keeps::K, Idefaults::ID, As::AT, ::Val{nargs}, iter, st, count) where {K,ID,AT,nargs}
quote
$(Expr(:meta, :noinline))
# destructure the keeps and As tuples
@nexprs $nargs i->(A_i = As[i])
@nexprs $nargs i->(keep_i = keeps[i])
@nexprs $nargs i->(Idefault_i = Idefaults[i])
while !done(iter, st)
I, st = next(iter, st)
# reverse-broadcast the indices
@nexprs $nargs i->(I_i = newindex(I, keep_i, Idefault_i))
# extract array values
@nexprs $nargs i->(@inbounds val_i = _broadcast_getindex(A_i, I_i))
# call the function
V = @ncall $nargs f val
S = typeof(V)
# store the result
if S <: eltype(B)
@inbounds B[I] = V
else
# This element type doesn't fit in B. Allocate a new B with wider eltype,
# copy over old values, and continue
newB = Base.similar(B, typejoin(eltype(B), S))
for II in Iterators.take(iter, count)
newB[II] = B[II]
end
newB[I] = V
return _broadcast!(f, newB, keeps, Idefaults, As, Val(nargs), iter, st, count+1)
end
count += 1
end
return B
end
end
maptoTuple(f) = Tuple{}
maptoTuple(f, a, b...) = Tuple{f(a), maptoTuple(f, b...).types...}
# An element type satisfying for all A:
# broadcast_getindex(
# combine_styles(A),
# A, broadcast_indices(A)
# )::_broadcast_getindex_eltype(A)
_broadcast_getindex_eltype(A) = _broadcast_getindex_eltype(combine_styles(A), A)
_broadcast_getindex_eltype(::Scalar, ::Type{T}) where T = Type{T}
_broadcast_getindex_eltype(::Union{Unknown,Scalar}, A) = typeof(A)
_broadcast_getindex_eltype(::BroadcastStyle, A) = eltype(A) # Tuple, Array, etc.
# Inferred eltype of result of broadcast(f, xs...)
combine_eltypes(f, A, As...) =
Base._return_type(f, maptoTuple(_broadcast_getindex_eltype, A, As...))
"""
broadcast(f, As...)
Broadcasts the arrays, tuples, `Ref`s and/or scalars `As` to a
container of the appropriate type and dimensions. In this context, anything
that is not a subtype of `AbstractArray`, `Ref` (except for `Ptr`s) or `Tuple`
is considered a scalar. The resulting container is established by
the following rules:
- If all the arguments are scalars, it returns a scalar.
- If the arguments are tuples and zero or more scalars, it returns a tuple.
- If the arguments contain at least one array or `Ref`, it returns an array
(expanding singleton dimensions), and treats `Ref`s as 0-dimensional arrays,
and tuples as 1-dimensional arrays.
A special syntax exists for broadcasting: `f.(args...)` is equivalent to
`broadcast(f, args...)`, and nested `f.(g.(args...))` calls are fused into a
single broadcast loop.
# Examples
```jldoctest
julia> A = [1, 2, 3, 4, 5]
5-element Array{Int64,1}:
1
2
3
4
5
julia> B = [1 2; 3 4; 5 6; 7 8; 9 10]
5×2 Array{Int64,2}:
1 2
3 4
5 6
7 8
9 10
julia> broadcast(+, A, B)
5×2 Array{Int64,2}:
2 3
5 6
8 9
11 12
14 15
julia> parse.(Int, ["1", "2"])
2-element Array{Int64,1}:
1
2
julia> abs.((1, -2))
(1, 2)
julia> broadcast(+, 1.0, (0, -2.0))
(1.0, -1.0)
julia> broadcast(+, 1.0, (0, -2.0), Ref(1))
2-element Array{Float64,1}:
2.0
0.0
julia> (+).([[0,2], [1,3]], Ref{Vector{Int}}([1,-1]))
2-element Array{Array{Int64,1},1}:
[1, 1]
[2, 2]
julia> string.(("one","two","three","four"), ": ", 1:4)
4-element Array{String,1}:
"one: 1"
"two: 2"
"three: 3"
"four: 4"
```
"""
@inline broadcast(f, A, Bs...) =
broadcast(f, combine_styles(A, Bs...), nothing, nothing, A, Bs...)
@inline broadcast(f, s::BroadcastStyle, ::Nothing, ::Nothing, A, Bs...) =
broadcast(f, s, combine_eltypes(f, A, Bs...), combine_indices(A, Bs...),
A, Bs...)
const NonleafHandlingTypes = Union{DefaultArrayStyle,ArrayConflict,VectorStyle,MatrixStyle}
@inline function broadcast(f, s::NonleafHandlingTypes, ::Type{ElType}, inds::Indices, As...) where ElType
if !Base.isconcretetype(ElType)
return broadcast_nonleaf(f, s, ElType, inds, As...)
end
dest = broadcast_similar(f, s, ElType, inds, As...)
broadcast!(f, dest, As...)
end
@inline function broadcast(f, s::BroadcastStyle, ::Type{ElType}, inds::Indices, As...) where ElType
dest = broadcast_similar(f, s, ElType, inds, As...)
broadcast!(f, dest, As...)
end
# When ElType is not concrete, use narrowing. Use the first element of each input to determine
# the starting output eltype; the _broadcast! method will widen `dest` as needed to
# accommodate later values.
function broadcast_nonleaf(f, s::NonleafHandlingTypes, ::Type{ElType}, shape::Indices, As...) where ElType
nargs = length(As)
iter = CartesianIndices(shape)
if isempty(iter)
return Base.similar(Array{ElType}, shape)
end
keeps, Idefaults = map_newindexer(shape, As)
st = start(iter)
I, st = next(iter, st)
val = f([ _broadcast_getindex(As[i], newindex(I, keeps[i], Idefaults[i])) for i=1:nargs ]...)
if val isa Bool
dest = Base.similar(BitArray, shape)
else
dest = Base.similar(Array{typeof(val)}, shape)
end
dest[I] = val
_broadcast!(f, dest, keeps, Idefaults, As, Val(nargs), iter, st, 1)
end
broadcast(f, ::Union{Scalar,Unknown}, ::Nothing, ::Nothing, a...) = f(a...)
@inline broadcast(f, ::Style{Tuple}, ::Nothing, ::Nothing, A, Bs...) =
tuplebroadcast(f, longest_tuple(A, Bs...), A, Bs...)
@inline tuplebroadcast(f, ::NTuple{N,Any}, As...) where {N} =
ntuple(k -> f(tuplebroadcast_getargs(As, k)...), Val(N))
@inline tuplebroadcast(f, ::NTuple{N,Any}, ::Type{T}, As...) where {N,T} =
ntuple(k -> f(T, tuplebroadcast_getargs(As, k)...), Val(N))
longest_tuple(A::Tuple, B::Tuple, Bs...) = longest_tuple(_longest_tuple(A, B), Bs...)
longest_tuple(A, B::Tuple, Bs...) = longest_tuple(B, Bs...)
longest_tuple(A::Tuple, B, Bs...) = longest_tuple(A, Bs...)
longest_tuple(A, B, Bs...) = longest_tuple(Bs...)
longest_tuple(A::Tuple) = A
# Support only 1-tuples and N-tuples where there are no conflicts in N
_longest_tuple(A::Tuple{Any}, B::Tuple{Any}) = A
_longest_tuple(A::NTuple{N,Any}, B::NTuple{N,Any}) where N = A
_longest_tuple(A::NTuple{N,Any}, B::Tuple{Any}) where N = A
_longest_tuple(A::Tuple{Any}, B::NTuple{N,Any}) where N = B
@noinline _longest_tuple(A, B) =
throw(DimensionMismatch("tuples $A and $B could not be broadcast to a common size"))
tuplebroadcast_getargs(::Tuple{}, k) = ()
@inline tuplebroadcast_getargs(As, k) =
(_broadcast_getindex(first(As), k), tuplebroadcast_getargs(tail(As), k)...)
"""
broadcast_getindex(A, inds...)
Equivalent to [`broadcast`](@ref)ing the `inds` arrays to a common size
and returning an array `[A[ks...] for ks in zip(indsb...)]` (where `indsb`
would be the broadcast `inds`). The shape of the output is equal to the shape of each
element of `indsb`.
# Examples
```jldoctest
julia> A = [11 12; 21 22]
2×2 Array{Int64,2}:
11 12
21 22
julia> A[1:2, 1:2]
2×2 Array{Int64,2}:
11 12
21 22
julia> broadcast_getindex(A, 1:2, 1:2)
2-element Array{Int64,1}:
11
22
julia> A[1:2, 2:-1:1]
2×2 Array{Int64,2}:
12 11
22 21
julia> broadcast_getindex(A, 1:2, 2:-1:1)
2-element Array{Int64,1}:
12
21
```
Because the indices are all vectors, these calls are like `[A[i[k], j[k]] for k = 1:2]`
where `i` and `j` are the two index vectors.
```jldoctest
julia> broadcast_getindex(A, 1:2, (1:2)')
2×2 Array{Int64,2}:
11 12
21 22
julia> broadcast_getindex(A, (1:2)', 1:2)
2×2 Array{Int64,2}:
11 21
12 22
julia> broadcast_getindex(A, [1 2 1; 1 2 2], [1, 2])
2×3 Array{Int64,2}:
11 21 11
12 22 22
```
"""
broadcast_getindex(src::AbstractArray, I::AbstractArray...) =
broadcast_getindex!(Base.similar(Array{eltype(src)}, combine_indices(I...)),
src,
I...)
@generated function broadcast_getindex!(dest::AbstractArray, src::AbstractArray, I::AbstractArray...)
N = length(I)
Isplat = Expr[:(I[$d]) for d = 1:N]
quote
@nexprs $N d->(I_d = I[d])
check_broadcast_indices(Base.axes(dest), $(Isplat...)) # unnecessary if this function is never called directly
checkbounds(src, $(Isplat...))
@nexprs $N d->(@nexprs $N k->(Ibcast_d_k = Base.axes(I_k, d) == OneTo(1)))
@nloops $N i dest d->(@nexprs $N k->(j_d_k = Ibcast_d_k ? 1 : i_d)) begin
@nexprs $N k->(@inbounds J_k = @nref $N I_k d->j_d_k)
@inbounds (@nref $N dest i) = (@nref $N src J)
end
dest
end
end
"""
broadcast_setindex!(A, X, inds...)
Efficient element-by-element setting of the values of `A` in a pattern established by `inds`.
Equivalent to broadcasting the `X` and `inds` arrays to a common size, and then executing
for (is, js) in zip(zip(indsb), eachindex(Xb))
A[is...] = Xb[js...]
end
where `Xb` and `indsb` are the broadcast `X` and `inds`.
See [`broadcast_getindex`](@ref) for examples of the treatment of `inds`.
"""
@generated function broadcast_setindex!(A::AbstractArray, x, I::AbstractArray...)
N = length(I)
Isplat = Expr[:(I[$d]) for d = 1:N]
quote
@nexprs $N d->(I_d = I[d])
checkbounds(A, $(Isplat...))
shape = combine_indices($(Isplat...))
@nextract $N shape d->(length(shape) < d ? OneTo(1) : shape[d])
@nexprs $N d->(@nexprs $N k->(Ibcast_d_k = Base.axes(I_k, d) == 1:1))
if !isa(x, AbstractArray)
xA = convert(eltype(A), x)
@nloops $N i d->shape_d d->(@nexprs $N k->(j_d_k = Ibcast_d_k ? 1 : i_d)) begin
@nexprs $N k->(@inbounds J_k = @nref $N I_k d->j_d_k)
@inbounds (@nref $N A J) = xA
end
else
X = x
@nexprs $N d->(shapelen_d = length(shape_d))
@ncall $N Base.setindex_shape_check X shapelen
Xstate = start(X)
@inbounds @nloops $N i d->shape_d d->(@nexprs $N k->(j_d_k = Ibcast_d_k ? 1 : i_d)) begin
@nexprs $N k->(J_k = @nref $N I_k d->j_d_k)
x_el, Xstate = next(X, Xstate)
(@nref $N A J) = x_el
end
end
A
end
end
############################################################
# x[...] .= f.(y...) ---> broadcast!(f, dotview(x, ...), y...).
# The dotview function defaults to getindex, but we override it in
# a few cases to get the expected in-place behavior without affecting
# explicit calls to view. (All of this can go away if slices
# are changed to generate views by default.)
Base.@propagate_inbounds dotview(args...) = Base.maybeview(args...)
############################################################
# The parser turns @. into a call to the __dot__ macro,
# which converts all function calls and assignments into
# broadcasting "dot" calls/assignments:
dottable(x) = false # avoid dotting spliced objects (e.g. view calls inserted by @view)
dottable(x::Symbol) = !isoperator(x) || first(string(x)) != '.' || x == :.. # don't add dots to dot operators
dottable(x::Expr) = x.head != :$
undot(x) = x
function undot(x::Expr)
if x.head == :.=
Expr(:(=), x.args...)
elseif x.head == :block # occurs in for x=..., y=...
Expr(:block, map(undot, x.args)...)
else
x
end
end
__dot__(x) = x
function __dot__(x::Expr)
dotargs = map(__dot__, x.args)
if x.head == :call && dottable(x.args[1])
Expr(:., dotargs[1], Expr(:tuple, dotargs[2:end]...))
elseif x.head == :$
x.args[1]
elseif x.head == :let # don't add dots to `let x=...` assignments
Expr(:let, undot(dotargs[1]), dotargs[2])
elseif x.head == :for # don't add dots to for x=... assignments
Expr(:for, undot(dotargs[1]), dotargs[2])
elseif (x.head == :(=) || x.head == :function || x.head == :macro) &&
Meta.isexpr(x.args[1], :call) # function or macro definition
Expr(x.head, x.args[1], dotargs[2])
else
head = string(x.head)
if last(head) == '=' && first(head) != '.'
Expr(Symbol('.',head), dotargs...)
else
Expr(x.head, dotargs...)
end
end
end
"""
@. expr
Convert every function call or operator in `expr` into a "dot call"
(e.g. convert `f(x)` to `f.(x)`), and convert every assignment in `expr`
to a "dot assignment" (e.g. convert `+=` to `.+=`).
If you want to *avoid* adding dots for selected function calls in
`expr`, splice those function calls in with `\$`. For example,
`@. sqrt(abs(\$sort(x)))` is equivalent to `sqrt.(abs.(sort(x)))`
(no dot for `sort`).
(`@.` is equivalent to a call to `@__dot__`.)
# Examples
```jldoctest
julia> x = 1.0:3.0; y = similar(x);
julia> @. y = x + 3 * sin(x)
3-element Array{Float64,1}:
3.5244129544236893
4.727892280477045
3.4233600241796016
```
"""
macro __dot__(x)
esc(__dot__(x))
end
end # module