-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
math.jl
476 lines (401 loc) · 15.6 KB
/
math.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
# This file is a part of Julia. License is MIT: http://julialang.org/license
module Math
export sin, cos, tan, sinh, cosh, tanh, asin, acos, atan,
asinh, acosh, atanh, sec, csc, cot, asec, acsc, acot,
sech, csch, coth, asech, acsch, acoth,
sinpi, cospi, sinc, cosc,
cosd, cotd, cscd, secd, sind, tand,
acosd, acotd, acscd, asecd, asind, atand, atan2,
rad2deg, deg2rad,
log, log2, log10, log1p, exponent, exp, exp2, exp10, expm1,
cbrt, sqrt, erf, erfc, erfcx, erfi, dawson,
significand,
lgamma, hypot, gamma, lfact, max, min, minmax, ldexp, frexp,
clamp, clamp!, modf, ^, mod2pi,
airy, airyai, airyprime, airyaiprime, airybi, airybiprime, airyx,
besselj0, besselj1, besselj, besseljx,
bessely0, bessely1, bessely, besselyx,
hankelh1, hankelh2, hankelh1x, hankelh2x,
besseli, besselix, besselk, besselkx, besselh, besselhx,
beta, lbeta, eta, zeta, polygamma, invdigamma, digamma, trigamma,
erfinv, erfcinv, @evalpoly
import Base: log, exp, sin, cos, tan, sinh, cosh, tanh, asin,
acos, atan, asinh, acosh, atanh, sqrt, log2, log10,
max, min, minmax, ^, exp2, muladd,
exp10, expm1, log1p,
sign_mask, exponent_mask, exponent_one, exponent_half,
significand_mask, significand_bits, exponent_bits, exponent_bias
import Core.Intrinsics: sqrt_llvm, box, unbox, powi_llvm
# non-type specific math functions
"""
clamp(x, lo, hi)
Return `x` if `lo <= x <= hi`. If `x < lo`, return `lo`. If `x > hi`, return `hi`. Arguments
are promoted to a common type. Operates elementwise over `x` if `x` is an array.
```jldoctest
julia> clamp([pi, 1.0, big(10.)], 2., 9.)
3-element Array{BigFloat,1}:
3.141592653589793238462643383279502884197169399375105820974944592307816406286198
2.000000000000000000000000000000000000000000000000000000000000000000000000000000
9.000000000000000000000000000000000000000000000000000000000000000000000000000000
```
"""
clamp{X,L,H}(x::X, lo::L, hi::H) =
ifelse(x > hi, convert(promote_type(X,L,H), hi),
ifelse(x < lo,
convert(promote_type(X,L,H), lo),
convert(promote_type(X,L,H), x)))
clamp{T}(x::AbstractArray{T,1}, lo, hi) = [clamp(xx, lo, hi) for xx in x]
clamp{T}(x::AbstractArray{T,2}, lo, hi) =
[clamp(x[i,j], lo, hi) for i in indices(x,1), j in indices(x,2)]
clamp{T}(x::AbstractArray{T}, lo, hi) =
reshape([clamp(xx, lo, hi) for xx in x], size(x))
"""
clamp!(array::AbstractArray, lo, hi)
Restrict values in `array` to the specified range, in-place.
See also [`clamp`](:func:`clamp`).
"""
function clamp!{T}(x::AbstractArray{T}, lo, hi)
@inbounds for i in eachindex(x)
x[i] = clamp(x[i], lo, hi)
end
x
end
# evaluate p[1] + x * (p[2] + x * (....)), i.e. a polynomial via Horner's rule
macro horner(x, p...)
ex = esc(p[end])
for i = length(p)-1:-1:1
ex = :(muladd(t, $ex, $(esc(p[i]))))
end
Expr(:block, :(t = $(esc(x))), ex)
end
# Evaluate p[1] + z*p[2] + z^2*p[3] + ... + z^(n-1)*p[n]. This uses
# Horner's method if z is real, but for complex z it uses a more
# efficient algorithm described in Knuth, TAOCP vol. 2, section 4.6.4,
# equation (3).
macro evalpoly(z, p...)
a = :($(esc(p[end])))
b = :($(esc(p[end-1])))
as = []
for i = length(p)-2:-1:1
ai = Symbol("a", i)
push!(as, :($ai = $a))
a = :(muladd(r, $ai, $b))
b = :($(esc(p[i])) - s * $ai) # see issue #15985 on fused mul-subtract
end
ai = :a0
push!(as, :($ai = $a))
C = Expr(:block,
:(x = real(tt)),
:(y = imag(tt)),
:(r = x + x),
:(s = muladd(x, x, y*y)),
as...,
:(muladd($ai, tt, $b)))
R = Expr(:macrocall, Symbol("@horner"), :tt, map(esc, p)...)
:(let tt = $(esc(z))
isa(tt, Complex) ? $C : $R
end)
end
rad2deg(z::AbstractFloat) = z * (180 / oftype(z, pi))
deg2rad(z::AbstractFloat) = z * (oftype(z, pi) / 180)
rad2deg(z::Real) = rad2deg(float(z))
deg2rad(z::Real) = deg2rad(float(z))
@vectorize_1arg Real rad2deg
@vectorize_1arg Real deg2rad
log{T<:Number}(b::T, x::T) = log(x)/log(b)
log(b::Number, x::Number) = log(promote(b,x)...)
@vectorize_2arg Number log
# type specific math functions
const libm = Base.libm_name
const openspecfun = "libopenspecfun"
# functions with no domain error
for f in (:cbrt, :sinh, :cosh, :tanh, :atan, :asinh, :exp, :erf, :erfc, :exp2, :expm1)
@eval begin
($f)(x::Float64) = ccall(($(string(f)),libm), Float64, (Float64,), x)
($f)(x::Float32) = ccall(($(string(f,"f")),libm), Float32, (Float32,), x)
($f)(x::Real) = ($f)(float(x))
@vectorize_1arg Number $f
end
end
# fallback definitions to prevent infinite loop from $f(x::Real) def above
cbrt(x::AbstractFloat) = x^(1//3)
exp2(x::AbstractFloat) = 2^x
for f in (:sinh, :cosh, :tanh, :atan, :asinh, :exp, :erf, :erfc, :expm1)
@eval ($f)(x::AbstractFloat) = error("not implemented for ", typeof(x))
end
# functions with special cases for integer arguments
@inline function exp2(x::Base.BitInteger)
if x > 1023
Inf64
elseif x <= -1023
# if -1073 < x <= -1023 then Result will be a subnormal number
# Hex literal with padding must be used to work on 32bit machine
reinterpret(Float64, 0x0000_0000_0000_0001 << ((x + 1074)) % UInt)
else
# We will cast everything to Int64 to avoid errors in case of Int128
# If x is a Int128, and is outside the range of Int64, then it is not -1023<x<=1023
reinterpret(Float64, (exponent_bias(Float64) + (x % Int64)) << (significand_bits(Float64)) % UInt)
end
end
# TODO: GNU libc has exp10 as an extension; should openlibm?
exp10(x::Float64) = 10.0^x
exp10(x::Float32) = 10.0f0^x
exp10(x::Integer) = exp10(float(x))
@vectorize_1arg Number exp10
# utility for converting NaN return to DomainError
@inline nan_dom_err(f, x) = isnan(f) & !isnan(x) ? throw(DomainError()) : f
# functions that return NaN on non-NaN argument for domain error
for f in (:sin, :cos, :tan, :asin, :acos, :acosh, :atanh, :log, :log2, :log10,
:lgamma, :log1p)
@eval begin
($f)(x::Float64) = nan_dom_err(ccall(($(string(f)),libm), Float64, (Float64,), x), x)
($f)(x::Float32) = nan_dom_err(ccall(($(string(f,"f")),libm), Float32, (Float32,), x), x)
($f)(x::Real) = ($f)(float(x))
@vectorize_1arg Number $f
end
end
sqrt(x::Float64) = box(Float64,sqrt_llvm(unbox(Float64,x)))
sqrt(x::Float32) = box(Float32,sqrt_llvm(unbox(Float32,x)))
sqrt(x::Real) = sqrt(float(x))
@vectorize_1arg Number sqrt
"""
hypot(x, y)
Compute the hypotenuse ``\\sqrt{x^2+y^2}`` avoiding overflow and underflow.
"""
hypot(x::Number, y::Number) = hypot(promote(x, y)...)
function hypot{T<:Number}(x::T, y::T)
ax = abs(x)
ay = abs(y)
if ax < ay
ax, ay = ay, ax
end
if ax == 0
r = ay / one(ax)
else
r = ay / ax
end
rr = ax * sqrt(1 + r * r)
# Use type of rr to make sure that return type is the same for
# all branches
if isnan(r)
isinf(ax) && return oftype(rr, Inf)
isinf(ay) && return oftype(rr, Inf)
return oftype(rr, r)
else
return rr
end
end
@vectorize_2arg Number hypot
"""
hypot(x...)
Compute the hypotenuse ``\\sqrt{\\sum x_i^2}`` avoiding overflow and underflow.
"""
hypot(x::Number...) = vecnorm(x)
atan2(y::Real, x::Real) = atan2(promote(float(y),float(x))...)
atan2{T<:AbstractFloat}(y::T, x::T) = Base.no_op_err("atan2", T)
atan2(y::Float64, x::Float64) = ccall((:atan2,libm), Float64, (Float64, Float64,), y, x)
atan2(y::Float32, x::Float32) = ccall((:atan2f,libm), Float32, (Float32, Float32), y, x)
@vectorize_2arg Number atan2
max{T<:AbstractFloat}(x::T, y::T) = ifelse((y > x) | (signbit(y) < signbit(x)),
ifelse(isnan(y), x, y), ifelse(isnan(x), y, x))
@vectorize_2arg Real max
min{T<:AbstractFloat}(x::T, y::T) = ifelse((y < x) | (signbit(y) > signbit(x)),
ifelse(isnan(y), x, y), ifelse(isnan(x), y, x))
@vectorize_2arg Real min
minmax{T<:AbstractFloat}(x::T, y::T) = ifelse(isnan(x-y), ifelse(isnan(x), (y, y), (x, x)),
ifelse((y < x) | (signbit(y) > signbit(x)), (y, x),
ifelse((y > x) | (signbit(y) < signbit(x)), (x, y),
ifelse(x == x, (x, x), (y, y)))))
ldexp(x::Float64,e::Integer) = ccall((:scalbn,libm), Float64, (Float64,Int32), x, Int32(e))
ldexp(x::Float32,e::Integer) = ccall((:scalbnf,libm), Float32, (Float32,Int32), x, Int32(e))
# TODO: vectorize ldexp
function exponent{T<:AbstractFloat}(x::T)
xu = reinterpret(Unsigned,x)
xe = xu & exponent_mask(T)
k = Int(xe >> significand_bits(T))
if xe == 0 # x is subnormal
x == 0 && throw(DomainError())
xu &= significand_mask(T)
m = leading_zeros(xu)-exponent_bits(T)
k = 1-m
elseif xe == exponent_mask(T) # NaN or Inf
throw(DomainError())
end
k - exponent_bias(T)
end
@vectorize_1arg Real exponent
function significand{T<:AbstractFloat}(x::T)
xu = reinterpret(Unsigned,x)
xe = xu & exponent_mask(T)
if xe == 0 # x is subnormal
x == 0 && return x
xs = xu & sign_mask(T)
xu $= xs
m = leading_zeros(xu)-exponent_bits(T)
xu <<= m
xu $= xs
elseif xe == exponent_mask(T) # NaN or Inf
return x
end
xu = (xu & ~exponent_mask(T)) | exponent_one(T)
reinterpret(T,xu)
end
@vectorize_1arg Real significand
function frexp{T<:AbstractFloat}(x::T)
xu = reinterpret(Unsigned,x)
xe = xu & exponent_mask(T)
k = Int(xe >> significand_bits(T))
if xe == 0 # x is subnormal
x == 0 && return x, 0
xs = xu & sign_mask(T)
xu $= xs
m = leading_zeros(xu)-exponent_bits(T)
xu <<= m
xu $= xs
k = 1-m
elseif xe == exponent_mask(T) # NaN or Inf
return x,0
end
k -= (exponent_bias(T)-1)
xu = (xu & ~exponent_mask(T)) | exponent_half(T)
reinterpret(T,xu), k
end
function frexp{T<:AbstractFloat}(A::Array{T})
F = similar(A)
E = Array{Int}(size(A))
for (iF, iE, iA) in zip(eachindex(F), eachindex(E), eachindex(A))
F[iF], E[iE] = frexp(A[iA])
end
return (F, E)
end
modf(x) = rem(x,one(x)), trunc(x)
const _modff_temp = Ref{Float32}()
function modf(x::Float32)
f = ccall((:modff,libm), Float32, (Float32,Ptr{Float32}), x, _modff_temp)
f, _modff_temp[]
end
const _modf_temp = Ref{Float64}()
function modf(x::Float64)
f = ccall((:modf,libm), Float64, (Float64,Ptr{Float64}), x, _modf_temp)
f, _modf_temp[]
end
^(x::Float64, y::Float64) = nan_dom_err(ccall((:pow,libm), Float64, (Float64,Float64), x, y), x+y)
^(x::Float32, y::Float32) = nan_dom_err(ccall((:powf,libm), Float32, (Float32,Float32), x, y), x+y)
^(x::Float64, y::Integer) =
box(Float64, powi_llvm(unbox(Float64,x), unbox(Int32,Int32(y))))
^(x::Float32, y::Integer) =
box(Float32, powi_llvm(unbox(Float32,x), unbox(Int32,Int32(y))))
function angle_restrict_symm(theta)
const P1 = 4 * 7.8539812564849853515625e-01
const P2 = 4 * 3.7748947079307981766760e-08
const P3 = 4 * 2.6951514290790594840552e-15
y = 2*floor(theta/(2*pi))
r = ((theta - y*P1) - y*P2) - y*P3
if (r > pi)
r -= (2*pi)
end
return r
end
## mod2pi-related calculations ##
function add22condh(xh::Float64, xl::Float64, yh::Float64, yl::Float64)
# as above, but only compute and return high double
r = xh+yh
s = (abs(xh) > abs(yh)) ? (xh-r+yh+yl+xl) : (yh-r+xh+xl+yl)
zh = r+s
return zh
end
function ieee754_rem_pio2(x::Float64)
# rem_pio2 essentially computes x mod pi/2 (ie within a quarter circle)
# and returns the result as
# y between + and - pi/4 (for maximal accuracy (as the sign bit is exploited)), and
# n, where n specifies the integer part of the division, or, at any rate,
# in which quadrant we are.
# The invariant fulfilled by the returned values seems to be
# x = y + n*pi/2 (where y = y1+y2 is a double-double and y2 is the "tail" of y).
# Note: for very large x (thus n), the invariant might hold only modulo 2pi
# (in other words, n might be off by a multiple of 4, or a multiple of 100)
# this is just wrapping up
# https://github.com/JuliaLang/openspecfun/blob/master/rem_pio2/e_rem_pio2.c
y = [0.0,0.0]
n = ccall((:__ieee754_rem_pio2, openspecfun), Cint, (Float64,Ptr{Float64}), x, y)
return (n,y)
end
# multiples of pi/2, as double-double (ie with "tail")
const pi1o2_h = 1.5707963267948966 # convert(Float64, pi * BigFloat(1/2))
const pi1o2_l = 6.123233995736766e-17 # convert(Float64, pi * BigFloat(1/2) - pi1o2_h)
const pi2o2_h = 3.141592653589793 # convert(Float64, pi * BigFloat(1))
const pi2o2_l = 1.2246467991473532e-16 # convert(Float64, pi * BigFloat(1) - pi2o2_h)
const pi3o2_h = 4.71238898038469 # convert(Float64, pi * BigFloat(3/2))
const pi3o2_l = 1.8369701987210297e-16 # convert(Float64, pi * BigFloat(3/2) - pi3o2_h)
const pi4o2_h = 6.283185307179586 # convert(Float64, pi * BigFloat(2))
const pi4o2_l = 2.4492935982947064e-16 # convert(Float64, pi * BigFloat(2) - pi4o2_h)
"""
mod2pi(x)
Modulus after division by `2π`, returning in the range ``[0,2π)``.
This function computes a floating point representation of the modulus after division by
numerically exact `2π`, and is therefore not exactly the same as `mod(x,2π)`, which would
compute the modulus of `x` relative to division by the floating-point number `2π`.
"""
function mod2pi(x::Float64) # or modtau(x)
# with r = mod2pi(x)
# a) 0 <= r < 2π (note: boundary open or closed - a bit fuzzy, due to rem_pio2 implementation)
# b) r-x = k*2π with k integer
# note: mod(n,4) is 0,1,2,3; while mod(n-1,4)+1 is 1,2,3,4.
# We use the latter to push negative y in quadrant 0 into the positive (one revolution, + 4*pi/2)
if x < pi4o2_h
if 0.0 <= x return x end
if x > -pi4o2_h
return add22condh(x,0.0,pi4o2_h,pi4o2_l)
end
end
(n,y) = ieee754_rem_pio2(x)
if iseven(n)
if n & 2 == 2 # add pi
return add22condh(y[1],y[2],pi2o2_h,pi2o2_l)
else # add 0 or 2pi
if y[1] > 0.0
return y[1]
else # else add 2pi
return add22condh(y[1],y[2],pi4o2_h,pi4o2_l)
end
end
else # add pi/2 or 3pi/2
if n & 2 == 2 # add 3pi/2
return add22condh(y[1],y[2],pi3o2_h,pi3o2_l)
else # add pi/2
return add22condh(y[1],y[2],pi1o2_h,pi1o2_l)
end
end
end
mod2pi(x::Float32) = Float32(mod2pi(Float64(x)))
mod2pi(x::Int32) = mod2pi(Float64(x))
function mod2pi(x::Int64)
fx = Float64(x)
fx == x || throw(ArgumentError("Int64 argument to mod2pi is too large: $x"))
mod2pi(fx)
end
# generic fallback; for number types, promotion.jl does promotion
muladd(x,y,z) = x*y+z
# Float16 definitions
for func in (:sin,:cos,:tan,:asin,:acos,:atan,:sinh,:cosh,:tanh,:asinh,:acosh,
:atanh,:exp,:log,:log2,:log10,:sqrt,:lgamma,:log1p,:erf,:erfc)
@eval begin
$func(a::Float16) = Float16($func(Float32(a)))
$func(a::Complex32) = Complex32($func(Complex64(a)))
end
end
for func in (:atan2,:hypot)
@eval begin
$func(a::Float16,b::Float16) = Float16($func(Float32(a),Float32(b)))
end
end
ldexp(a::Float16, b::Integer) = Float16(ldexp(Float32(a), b))
# More special functions
include("special/trig.jl")
include("special/bessel.jl")
include("special/erf.jl")
include("special/gamma.jl")
module JuliaLibm
include("special/log.jl")
end
end # module