-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
adjtrans.jl
314 lines (262 loc) · 13.1 KB
/
adjtrans.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
# This file is a part of Julia. License is MIT: https://julialang.org/license
using Base: @propagate_inbounds, @_inline_meta
import Base: length, size, axes, IndexStyle, getindex, setindex!, parent, vec, convert, similar
### basic definitions (types, aliases, constructors, abstractarray interface, sundry similar)
# note that Adjoint and Transpose must be able to wrap not only vectors and matrices
# but also factorizations, rotations, and other linear algebra objects, including
# user-defined such objects. so do not restrict the wrapped type.
"""
Adjoint
Lazy wrapper type for an adjoint view of the underlying linear algebra object,
usually an `AbstractVector`/`AbstractMatrix`, but also some `Factorization`, for instance.
Usually, the `Adjoint` constructor should not be called directly, use [`adjoint`](@ref)
instead. To materialize the view use [`copy`](@ref).
This type is intended for linear algebra usage - for general data manipulation see
[`permutedims`](@ref Base.permutedims).
# Examples
```jldoctest
julia> A = [3+2im 9+2im; 8+7im 4+6im]
2×2 Array{Complex{Int64},2}:
3+2im 9+2im
8+7im 4+6im
julia> adjoint(A)
2×2 Adjoint{Complex{Int64},Array{Complex{Int64},2}}:
3-2im 8-7im
9-2im 4-6im
```
"""
struct Adjoint{T,S} <: AbstractMatrix{T}
parent::S
function Adjoint{T,S}(A::S) where {T,S}
checkeltype_adjoint(T, eltype(A))
new(A)
end
end
"""
Transpose
Lazy wrapper type for a transpose view of the underlying linear algebra object,
usually an `AbstractVector`/`AbstractMatrix`, but also some `Factorization`, for instance.
Usually, the `Transpose` constructor should not be called directly, use [`transpose`](@ref)
instead. To materialize the view use [`copy`](@ref).
This type is intended for linear algebra usage - for general data manipulation see
[`permutedims`](@ref Base.permutedims).
# Examples
```jldoctest
julia> A = [3+2im 9+2im; 8+7im 4+6im]
2×2 Array{Complex{Int64},2}:
3+2im 9+2im
8+7im 4+6im
julia> transpose(A)
2×2 Transpose{Complex{Int64},Array{Complex{Int64},2}}:
3+2im 8+7im
9+2im 4+6im
```
"""
struct Transpose{T,S} <: AbstractMatrix{T}
parent::S
function Transpose{T,S}(A::S) where {T,S}
checkeltype_transpose(T, eltype(A))
new(A)
end
end
"""
functor(::AbstractArray) -> adjoint|transpose|identity
functor(::Type{<:AbstractArray}) -> adjoint|transpose|identity
Return [`adjoint`](@ref) from an `Adjoint` type or object and
[`transpose`](@ref) from an `Transpose` type or object. Otherwise,
return [`identity`](@ref). Note that `Adjoint` and `Transpose` have
to be the outer-most wrapper object for non-`identity` function to be
returned.
"""
functor(::T) where {T <: AbstractArray} = functor(T)
functor(::Type{<:AbstractArray}) = identity
functor(::Type{<:Adjoint}) = adjoint
functor(::Type{<:Transpose}) = transpose
"""
inplace(f) -> f!
Return an in-place variant of function `f`.
# Examples
```jldoctest
julia> using LinearAlgebra: inplace
julia> inplace(adjoint) === adjoint!
true
```
"""
inplace(::typeof(adjoint)) = adjoint!
inplace(::typeof(transpose)) = transpose!
function checkeltype_adjoint(::Type{ResultEltype}, ::Type{ParentEltype}) where {ResultEltype,ParentEltype}
Expected = Base.promote_op(adjoint, ParentEltype)
ResultEltype === Expected || error(string(
"Element type mismatch. Tried to create an `Adjoint{", ResultEltype, "}` ",
"from an object with eltype `", ParentEltype, "`, but the element type of ",
"the adjoint of an object with eltype `", ParentEltype, "` must be ",
"`", Expected, "`."))
return nothing
end
function checkeltype_transpose(::Type{ResultEltype}, ::Type{ParentEltype}) where {ResultEltype, ParentEltype}
Expected = Base.promote_op(transpose, ParentEltype)
ResultEltype === Expected || error(string(
"Element type mismatch. Tried to create a `Transpose{", ResultEltype, "}` ",
"from an object with eltype `", ParentEltype, "`, but the element type of ",
"the transpose of an object with eltype `", ParentEltype, "` must be ",
"`", Expected, "`."))
return nothing
end
# basic outer constructors
Adjoint(A) = Adjoint{Base.promote_op(adjoint,eltype(A)),typeof(A)}(A)
Transpose(A) = Transpose{Base.promote_op(transpose,eltype(A)),typeof(A)}(A)
Base.dataids(A::Union{Adjoint, Transpose}) = Base.dataids(A.parent)
Base.unaliascopy(A::Union{Adjoint,Transpose}) = typeof(A)(Base.unaliascopy(A.parent))
# wrapping lowercase quasi-constructors
"""
adjoint(A)
Lazy adjoint (conjugate transposition) (also postfix `'`).
Note that `adjoint` is applied recursively to elements.
This operation is intended for linear algebra usage - for general data manipulation see
[`permutedims`](@ref Base.permutedims).
# Examples
```jldoctest
julia> A = [3+2im 9+2im; 8+7im 4+6im]
2×2 Array{Complex{Int64},2}:
3+2im 9+2im
8+7im 4+6im
julia> adjoint(A)
2×2 Adjoint{Complex{Int64},Array{Complex{Int64},2}}:
3-2im 8-7im
9-2im 4-6im
```
"""
adjoint(A::AbstractVecOrMat) = Adjoint(A)
"""
transpose(A)
Lazy transpose. Mutating the returned object should appropriately mutate `A`. Often,
but not always, yields `Transpose(A)`, where `Transpose` is a lazy transpose wrapper. Note
that this operation is recursive.
This operation is intended for linear algebra usage - for general data manipulation see
[`permutedims`](@ref Base.permutedims), which is non-recursive.
# Examples
```jldoctest
julia> A = [3+2im 9+2im; 8+7im 4+6im]
2×2 Array{Complex{Int64},2}:
3+2im 9+2im
8+7im 4+6im
julia> transpose(A)
2×2 Transpose{Complex{Int64},Array{Complex{Int64},2}}:
3+2im 8+7im
9+2im 4+6im
```
"""
transpose(A::AbstractVecOrMat) = Transpose(A)
# unwrapping lowercase quasi-constructors
adjoint(A::Adjoint) = A.parent
transpose(A::Transpose) = A.parent
adjoint(A::Transpose{<:Real}) = A.parent
transpose(A::Adjoint{<:Real}) = A.parent
# some aliases for internal convenience use
const AdjOrTrans{T,S} = Union{Adjoint{T,S},Transpose{T,S}} where {T,S}
const AdjointAbsVec{T} = Adjoint{T,<:AbstractVector}
const TransposeAbsVec{T} = Transpose{T,<:AbstractVector}
const AdjOrTransAbsVec{T} = AdjOrTrans{T,<:AbstractVector}
const AdjOrTransAbsMat{T} = AdjOrTrans{T,<:AbstractMatrix}
# for internal use below
wrapperop(A::Adjoint) = adjoint
wrapperop(A::Transpose) = transpose
# AbstractArray interface, basic definitions
length(A::AdjOrTrans) = length(A.parent)
size(v::AdjOrTransAbsVec) = (1, length(v.parent))
size(A::AdjOrTransAbsMat) = reverse(size(A.parent))
axes(v::AdjOrTransAbsVec) = (Base.OneTo(1), axes(v.parent)...)
axes(A::AdjOrTransAbsMat) = reverse(axes(A.parent))
IndexStyle(::Type{<:AdjOrTransAbsVec}) = IndexLinear()
IndexStyle(::Type{<:AdjOrTransAbsMat}) = IndexCartesian()
@propagate_inbounds getindex(v::AdjOrTransAbsVec, i::Int) = wrapperop(v)(v.parent[i-1+first(axes(v.parent)[1])])
@propagate_inbounds getindex(A::AdjOrTransAbsMat, i::Int, j::Int) = wrapperop(A)(A.parent[j, i])
@propagate_inbounds setindex!(v::AdjOrTransAbsVec, x, i::Int) = (setindex!(v.parent, wrapperop(v)(x), i-1+first(axes(v.parent)[1])); v)
@propagate_inbounds setindex!(A::AdjOrTransAbsMat, x, i::Int, j::Int) = (setindex!(A.parent, wrapperop(A)(x), j, i); A)
# AbstractArray interface, additional definitions to retain wrapper over vectors where appropriate
@propagate_inbounds getindex(v::AdjOrTransAbsVec, ::Colon, is::AbstractArray{Int}) = wrapperop(v)(v.parent[is])
@propagate_inbounds getindex(v::AdjOrTransAbsVec, ::Colon, ::Colon) = wrapperop(v)(v.parent[:])
# conversion of underlying storage
convert(::Type{Adjoint{T,S}}, A::Adjoint) where {T,S} = Adjoint{T,S}(convert(S, A.parent))
convert(::Type{Transpose{T,S}}, A::Transpose) where {T,S} = Transpose{T,S}(convert(S, A.parent))
# for vectors, the semantics of the wrapped and unwrapped types differ
# so attempt to maintain both the parent and wrapper type insofar as possible
similar(A::AdjOrTransAbsVec) = wrapperop(A)(similar(A.parent))
similar(A::AdjOrTransAbsVec, ::Type{T}) where {T} = wrapperop(A)(similar(A.parent, Base.promote_op(wrapperop(A), T)))
# for matrices, the semantics of the wrapped and unwrapped types are generally the same
# and as you are allocating with similar anyway, you might as well get something unwrapped
similar(A::AdjOrTrans) = similar(A.parent, eltype(A), axes(A))
similar(A::AdjOrTrans, ::Type{T}) where {T} = similar(A.parent, T, axes(A))
similar(A::AdjOrTrans, ::Type{T}, dims::Dims{N}) where {T,N} = similar(A.parent, T, dims)
# sundry basic definitions
parent(A::AdjOrTrans) = A.parent
vec(v::TransposeAbsVec) = parent(v)
### concatenation
# preserve Adjoint/Transpose wrapper around vectors
# to retain the associated semantics post-concatenation
hcat(avs::Union{Number,AdjointAbsVec}...) = _adjoint_hcat(avs...)
hcat(tvs::Union{Number,TransposeAbsVec}...) = _transpose_hcat(tvs...)
_adjoint_hcat(avs::Union{Number,AdjointAbsVec}...) = adjoint(vcat(map(adjoint, avs)...))
_transpose_hcat(tvs::Union{Number,TransposeAbsVec}...) = transpose(vcat(map(transpose, tvs)...))
typed_hcat(::Type{T}, avs::Union{Number,AdjointAbsVec}...) where {T} = adjoint(typed_vcat(T, map(adjoint, avs)...))
typed_hcat(::Type{T}, tvs::Union{Number,TransposeAbsVec}...) where {T} = transpose(typed_vcat(T, map(transpose, tvs)...))
# otherwise-redundant definitions necessary to prevent hitting the concat methods in sparse/sparsevector.jl
hcat(avs::Adjoint{<:Any,<:Vector}...) = _adjoint_hcat(avs...)
hcat(tvs::Transpose{<:Any,<:Vector}...) = _transpose_hcat(tvs...)
hcat(avs::Adjoint{T,Vector{T}}...) where {T} = _adjoint_hcat(avs...)
hcat(tvs::Transpose{T,Vector{T}}...) where {T} = _transpose_hcat(tvs...)
# TODO unify and allow mixed combinations
### higher order functions
# preserve Adjoint/Transpose wrapper around vectors
# to retain the associated semantics post-map/broadcast
#
# note that the caller's operation f operates in the domain of the wrapped vectors' entries.
# hence the adjoint->f->adjoint shenanigans applied to the parent vectors' entries.
map(f, avs::AdjointAbsVec...) = adjoint(map((xs...) -> adjoint(f(adjoint.(xs)...)), parent.(avs)...))
map(f, tvs::TransposeAbsVec...) = transpose(map((xs...) -> transpose(f(transpose.(xs)...)), parent.(tvs)...))
quasiparentt(x) = parent(x); quasiparentt(x::Number) = x # to handle numbers in the defs below
quasiparenta(x) = parent(x); quasiparenta(x::Number) = conj(x) # to handle numbers in the defs below
broadcast(f, avs::Union{Number,AdjointAbsVec}...) = adjoint(broadcast((xs...) -> adjoint(f(adjoint.(xs)...)), quasiparenta.(avs)...))
broadcast(f, tvs::Union{Number,TransposeAbsVec}...) = transpose(broadcast((xs...) -> transpose(f(transpose.(xs)...)), quasiparentt.(tvs)...))
# Hack to preserve behavior after #32122; this needs to be done with a broadcast style instead to support dotted fusion
Broadcast.broadcast_preserving_zero_d(f, avs::Union{Number,AdjointAbsVec}...) = adjoint(broadcast((xs...) -> adjoint(f(adjoint.(xs)...)), quasiparenta.(avs)...))
Broadcast.broadcast_preserving_zero_d(f, tvs::Union{Number,TransposeAbsVec}...) = transpose(broadcast((xs...) -> transpose(f(transpose.(xs)...)), quasiparentt.(tvs)...))
# TODO unify and allow mixed combinations with a broadcast style
### linear algebra
(-)(A::Adjoint) = Adjoint( -A.parent)
(-)(A::Transpose) = Transpose(-A.parent)
## multiplication *
# Adjoint/Transpose-vector * vector
*(u::AdjointAbsVec, v::AbstractVector) = dot(u.parent, v)
*(u::TransposeAbsVec{T}, v::AbstractVector{T}) where {T<:Real} = dot(u.parent, v)
function *(u::TransposeAbsVec, v::AbstractVector)
require_one_based_indexing(u, v)
@boundscheck length(u) == length(v) || throw(DimensionMismatch())
return sum(@inbounds(u[k]*v[k]) for k in 1:length(u))
end
# vector * Adjoint/Transpose-vector
*(u::AbstractVector, v::AdjOrTransAbsVec) = broadcast(*, u, v)
# Adjoint/Transpose-vector * Adjoint/Transpose-vector
# (necessary for disambiguation with fallback methods in linalg/matmul)
*(u::AdjointAbsVec, v::AdjointAbsVec) = throw(MethodError(*, (u, v)))
*(u::TransposeAbsVec, v::TransposeAbsVec) = throw(MethodError(*, (u, v)))
# AdjOrTransAbsVec{<:Any,<:AdjOrTransAbsVec} is a lazy conj vectors
# We need to expand the combinations to avoid ambiguities
(*)(u::TransposeAbsVec, v::AdjointAbsVec{<:Any,<:TransposeAbsVec}) =
sum(uu*vv for (uu, vv) in zip(u, v))
(*)(u::AdjointAbsVec, v::AdjointAbsVec{<:Any,<:TransposeAbsVec}) =
sum(uu*vv for (uu, vv) in zip(u, v))
(*)(u::TransposeAbsVec, v::TransposeAbsVec{<:Any,<:AdjointAbsVec}) =
sum(uu*vv for (uu, vv) in zip(u, v))
(*)(u::AdjointAbsVec, v::TransposeAbsVec{<:Any,<:AdjointAbsVec}) =
sum(uu*vv for (uu, vv) in zip(u, v))
## pseudoinversion
pinv(v::AdjointAbsVec, tol::Real = 0) = pinv(v.parent, tol).parent
pinv(v::TransposeAbsVec, tol::Real = 0) = pinv(conj(v.parent)).parent
## left-division \
\(u::AdjOrTransAbsVec, v::AdjOrTransAbsVec) = pinv(u) * v
## right-division /
/(u::AdjointAbsVec, A::AbstractMatrix) = adjoint(adjoint(A) \ u.parent)
/(u::TransposeAbsVec, A::AbstractMatrix) = transpose(transpose(A) \ u.parent)
/(u::AdjointAbsVec, A::Transpose{<:Any,<:AbstractMatrix}) = adjoint(conj(A.parent) \ u.parent) # technically should be adjoint(copy(adjoint(copy(A))) \ u.parent)
/(u::TransposeAbsVec, A::Adjoint{<:Any,<:AbstractMatrix}) = transpose(conj(A.parent) \ u.parent) # technically should be transpose(copy(transpose(copy(A))) \ u.parent)