diff --git a/README.md b/README.md index 789b3a8..bd26e4d 100644 --- a/README.md +++ b/README.md @@ -88,3 +88,18 @@ Currently, diagnostic functions for checking symmetry, symplecticity and the so- * `satisfies_simplifying_assumption_d(tab, σ=tab.s)` This list is expected to grow in the near future. + + +## References + +If you use RungeKutta.jl in your work, please consider citing it by + +``` +@misc{Kraus:2020:RungeKutta, + title={RungeKutta.jl: Runge-Kutta Methods in Julia}, + author={Kraus, Michael}, + year={2020}, + howpublished={\url{https://github.com/JuliaGNI/RungeKutta.jl}}, + doi={10.5281/zenodo.4294923} +} +``` diff --git a/docs/src/index.md b/docs/src/index.md index 740eec7..7884e8e 100644 --- a/docs/src/index.md +++ b/docs/src/index.md @@ -64,3 +64,18 @@ In addition there exist functions to compute Gauss, Lobatto and Radau tableaus w All constructors take an optional type argument `T`, as in `TableauExplicitMidpoint(T)` or `TableauGauss(T,s)`. The default type is `Float64`, but it can be set to other number types if needed, e.g., to `Float32` for single precision or to the `Dec128` type from [DecFP.jl](https://github.com/JuliaMath/DecFP.jl) for quadruple precision. Internally, all tableaus are computed using `BigFloat`, providing high-accuracy coefficients as they are required for simulations in quadruple or higher precision. The internal precision can be set via `setprecision(40)`, cf. the [Julia Manual](https://docs.julialang.org/en/v1/) on [Arbitrary Precision Arithmetic](https://docs.julialang.org/en/v1/manual/integers-and-floating-point-numbers/#Arbitrary-Precision-Arithmetic). + + +## References + +If you use RungeKutta.jl in your work, please consider citing it by + +``` +@misc{Kraus:2020:RungeKutta, + title={RungeKutta.jl: Runge-Kutta Methods in Julia}, + author={Kraus, Michael}, + year={2020}, + howpublished={\url{https://github.com/JuliaGNI/RungeKutta.jl}}, + doi={10.5281/zenodo.4294923} +} +```