-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy patharithmetic.jl
619 lines (497 loc) · 17.8 KB
/
arithmetic.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
# This file is part of the TaylorSeries.jl Julia package, MIT license
#
# Luis Benet & David P. Sanders
# UNAM
#
# MIT Expat license
#
# Arithmetic operations: +, -, *, /
## Equality ##
for T in (:Taylor1, :TaylorN)
@eval begin
==(a::$T{T}, b::$T{S}) where {T<:Number,S<:Number} = ==(promote(a,b)...)
function ==(a::$T{T}, b::$T{T}) where {T<:Number}
if a.order != b.order
a, b = fixorder(a, b)
end
return a.coeffs == b.coeffs
end
end
end
function ==(a::HomogeneousPolynomial, b::HomogeneousPolynomial)
a.order == b.order && return a.coeffs == b.coeffs
return iszero(a.coeffs) && iszero(b.coeffs)
end
for T in (:Taylor1, :HomogeneousPolynomial, :TaylorN)
@eval iszero(a::$T) = iszero(a.coeffs)
end
## zero and one ##
for T in (:Taylor1, :TaylorN)
@eval zero(a::$T) = $T(zero.(a.coeffs))
@eval function one(a::$T)
b = zero(a)
b[0] = one(b[0])
return b
end
end
function zero(a::HomogeneousPolynomial{T}) where {T<:Number}
v = zero.(a.coeffs)
return HomogeneousPolynomial(v, a.order)
end
function zeros(a::HomogeneousPolynomial{T}, order::Int) where {T<:Number}
order == 0 && return [HomogeneousPolynomial([zero(a[1])], 0)]
v = Array{HomogeneousPolynomial{T}}(undef, order+1)
@simd for ord in eachindex(v)
@inbounds v[ord] = HomogeneousPolynomial(zero(a[1]), ord-1)
end
return v
end
zeros(::Type{HomogeneousPolynomial{T}}, order::Int) where {T<:Number} =
zeros( HomogeneousPolynomial([zero(T)], 0), order)
function one(a::HomogeneousPolynomial{T}) where {T<:Number}
v = one.(a.coeffs)
return HomogeneousPolynomial(v, a.order)
end
function ones(a::HomogeneousPolynomial{T}, order::Int) where {T<:Number}
order == 0 && return [HomogeneousPolynomial([one(a[1])], 0)]
v = Array{HomogeneousPolynomial{T}}(undef, order+1)
@simd for ord in eachindex(v)
@inbounds num_coeffs = size_table[ord]
@inbounds v[ord] = HomogeneousPolynomial(ones(T, num_coeffs), ord-1)
end
return v
end
ones(::Type{HomogeneousPolynomial{T}}, order::Int) where {T<:Number} =
ones( HomogeneousPolynomial([one(T)], 0), order)
## Addition and substraction ##
for (f, fc) in ((:+, :(add!)), (:-, :(subst!)))
for T in (:Taylor1, :TaylorN)
@eval begin
($f)(a::$T{T}, b::$T{S}) where {T<:Number,S<:Number} =
$f(promote(a,b)...)
function $f(a::$T{T}, b::$T{T}) where {T<:Number}
if a.order != b.order
a, b = fixorder(a, b)
end
v = similar(a.coeffs)
@__dot__ v = $f(a.coeffs, b.coeffs)
return $T(v, a.order)
end
function $f(a::$T)
v = similar(a.coeffs)
@__dot__ v = $f(a.coeffs)
return $T(v, a.order)
end
($f)(a::$T{T}, b::S) where {T<:Number,S<:Number} =
$f(promote(a,b)...)
function $f(a::$T{T}, b::T) where {T<:Number}
coeffs = copy(a.coeffs)
@inbounds coeffs[1] = $f(a[0], b)
return $T(coeffs, a.order)
end
($f)(b::S, a::$T{T}) where {T<:Number,S<:Number} =
$f(promote(b,a)...)
function $f(b::T, a::$T{T}) where {T<:Number}
coeffs = similar(a.coeffs)
@__dot__ coeffs = ($f)(a.coeffs)
@inbounds coeffs[1] = $f(b, a[0])
return $T(coeffs, a.order)
end
## add! and subst! ##
function ($fc)(v::$T{T}, a::$T{T}, k::Int) where {T<:Number}
@inbounds v[k] = ($f)(a[k])
return nothing
end
function ($fc)(v::$T{T}, a::T, k::Int) where {T<:Number}
@inbounds v[k] = k==0 ? ($f)(a) : zero(a)
return nothing
end
function ($fc)(v::$T, a::$T, b::$T, k::Int)
@inbounds v[k] = ($f)(a[k], b[k])
return nothing
end
function ($fc)(v::$T, a::$T, b::Number, k::Int)
@inbounds v[k] = k==0 ? ($f)(a[0], b) : ($f)(a[k], zero(b))
return nothing
end
function ($fc)(v::$T, a::Number, b::$T, k::Int)
@inbounds v[k] = k==0 ? ($f)(a, b[0]) : ($f)(zero(a), b[k])
return nothing
end
end
end
@eval begin
($f)(a::HomogeneousPolynomial{T}, b::HomogeneousPolynomial{S}) where
{T<:NumberNotSeriesN,S<:NumberNotSeriesN} = $f(promote(a,b)...)
function $f(a::HomogeneousPolynomial{T}, b::HomogeneousPolynomial{T}) where
{T<:NumberNotSeriesN}
@assert a.order == b.order
v = similar(a.coeffs)
@__dot__ v = $f(a.coeffs, b.coeffs)
return HomogeneousPolynomial(v, a.order)
end
function $f(a::HomogeneousPolynomial)
v = similar(a.coeffs)
@__dot__ v = $f(a.coeffs)
return HomogeneousPolynomial(v, a.order)
end
function ($f)(a::TaylorN{Taylor1{T}}, b::Taylor1{S}) where
{T<:NumberNotSeries,S<:NumberNotSeries}
@inbounds aux = $f(a[0][1], b)
R = eltype(aux)
coeffs = Array{HomogeneousPolynomial{Taylor1{R}}}(undef, a.order+1)
coeffs .= a.coeffs
@inbounds coeffs[1] = aux
return TaylorN(coeffs, a.order)
end
function ($f)(b::Taylor1{S}, a::TaylorN{Taylor1{T}}) where
{T<:NumberNotSeries,S<:NumberNotSeries}
@inbounds aux = $f(b, a[0][1])
R = eltype(aux)
coeffs = Array{HomogeneousPolynomial{Taylor1{R}}}(undef, a.order+1)
@__dot__ coeffs = $f(a.coeffs)
@inbounds coeffs[1] = aux
return TaylorN(coeffs, a.order)
end
function ($f)(a::Taylor1{TaylorN{T}}, b::TaylorN{S}) where
{T<:NumberNotSeries,S<:NumberNotSeries}
@inbounds aux = $f(a[0], b)
R = eltype(aux)
coeffs = Array{TaylorN{R}}(undef, a.order+1)
coeffs .= a.coeffs
@inbounds coeffs[1] = aux
return Taylor1(coeffs, a.order)
end
function ($f)(b::TaylorN{S}, a::Taylor1{TaylorN{T}}) where
{T<:NumberNotSeries,S<:NumberNotSeries}
@inbounds aux = $f(b, a[0])
R = eltype(aux)
coeffs = Array{TaylorN{R}}(undef, a.order+1)
@__dot__ coeffs = $f(a.coeffs)
@inbounds coeffs[1] = aux
return Taylor1(coeffs, a.order)
end
end
end
+(a::Taylor1{T}, b::TaylorN{S}) where {T<:NumberNotSeries,S<:NumberNotSeries} =
+(promote(a,b)...)
-(a::Taylor1{T}, b::TaylorN{S}) where {T<:NumberNotSeries,S<:NumberNotSeries} =
-(promote(a,b)...)
## Multiplication ##
for T in (:Taylor1, :HomogeneousPolynomial, :TaylorN)
@eval begin
function *(a::T, b::$T{S}) where {T<:NumberNotSeries,S<:NumberNotSeries}
@inbounds aux = a * b.coeffs[1]
v = Array{typeof(aux)}(undef, length(b.coeffs))
@__dot__ v = a * b.coeffs
return $T(v, b.order)
end
*(b::$T{S}, a::T) where {T<:NumberNotSeries,S<:NumberNotSeries} = a * b
function *(a::T, b::$T{T}) where {T<:Number}
v = Array{T}(undef, length(b.coeffs))
@__dot__ v = a * b.coeffs
return $T(v, b.order)
end
*(b::$T{T}, a::T) where {T<:Number} = a * b
end
end
for T in (:HomogeneousPolynomial, :TaylorN)
@eval begin
function *(a::Taylor1{T}, b::$T{Taylor1{S}}) where
{T<:NumberNotSeries,S<:NumberNotSeries}
@inbounds aux = a * b.coeffs[1]
R = typeof(aux)
coeffs = Array{R}(undef, length(b.coeffs))
@__dot__ coeffs = a * b.coeffs
return $T(coeffs, b.order)
end
*(b::$T{Taylor1{R}}, a::Taylor1{T}) where
{T<:NumberNotSeries,R<:NumberNotSeries} = a * b
function *(a::$T{T}, b::Taylor1{$T{S}}) where {T<:NumberNotSeries,S<:NumberNotSeries}
@inbounds aux = a * b[0]
R = typeof(aux)
coeffs = Array{R}(undef, length(b.coeffs))
@__dot__ coeffs = a * b.coeffs
return Taylor1(coeffs, b.order)
end
*(b::Taylor1{$T{S}}, a::$T{T}) where {T<:NumberNotSeries,S<:NumberNotSeries} = a * b
end
end
for (T, W) in ((:Taylor1, :Number), (:TaylorN, :NumberNotSeriesN))
@eval function *(a::$T{T}, b::$T{T}) where {T<:$W}
if a.order != b.order
a, b = fixorder(a, b)
end
c = $T(zero(a[0]), a.order)
for ord in eachindex(c)
mul!(c, a, b, ord) # updates c[ord]
end
return c
end
end
*(a::HomogeneousPolynomial{T}, b::HomogeneousPolynomial{S}) where
{T<:NumberNotSeriesN,S<:NumberNotSeriesN} = *(promote(a,b)...)
function *(a::HomogeneousPolynomial{T}, b::HomogeneousPolynomial{T}) where
{T<:NumberNotSeriesN}
order = a.order + b.order
order > get_order() && return HomogeneousPolynomial(zero(a[1]), get_order())
res = HomogeneousPolynomial(zero(a[1]), order)
mul!(res, a, b)
return res
end
# Internal multiplication functions
for T in (:Taylor1, :TaylorN)
@eval @inline function mul!(c::$T{T}, a::$T{T}, b::$T{T}, k::Int) where {T<:Number}
if $T == Taylor1
@inbounds c[k] = a[0] * b[k]
else
@inbounds mul!(c[k], a[0], b[k])
end
@inbounds for i = 1:k
if $T == Taylor1
c[k] += a[i] * b[k-i]
else
mul!(c[k], a[i], b[k-i])
end
end
return nothing
end
@eval @inline function mul!(v::$T, a::$T, b::NumberNotSeries, k::Int)
@inbounds v[k] = a[k] * b
return nothing
end
@eval @inline function mul!(v::$T, a::NumberNotSeries, b::$T, k::Int)
@inbounds v[k] = a * b[k]
return nothing
end
end
@doc doc"""
mul!(c, a, b, k::Int) --> nothing
Update the `k`-th expansion coefficient `c[k]` of `c = a * b`,
where all `c`, `a`, and `b` are either `Taylor1` or `TaylorN`.
The coefficients are given by
```math
c_k = \sum_{j=0}^k a_j b_{k-j}.
```
""" mul!
"""
mul!(c, a, b) --> nothing
Return `c = a*b` with no allocation; all arguments are `HomogeneousPolynomial`.
"""
@inline function mul!(c::HomogeneousPolynomial, a::HomogeneousPolynomial,
b::HomogeneousPolynomial)
(iszero(b) || iszero(a)) && return nothing
@inbounds num_coeffs_a = size_table[a.order+1]
@inbounds num_coeffs_b = size_table[b.order+1]
@inbounds posTb = pos_table[c.order+1]
@inbounds indTa = index_table[a.order+1]
@inbounds indTb = index_table[b.order+1]
@inbounds for na in 1:num_coeffs_a
ca = a[na]
# iszero(ca) && continue
inda = indTa[na]
@inbounds for nb in 1:num_coeffs_b
cb = b[nb]
# iszero(cb) && continue
indb = indTb[nb]
pos = posTb[inda + indb]
c[pos] += ca * cb
end
end
return nothing
end
## Division ##
function /(a::Taylor1{Rational{T}}, b::S) where {T<:Integer,S<:NumberNotSeries}
R = typeof( a[0] // b)
v = Array{R}(undef, a.order+1)
@__dot__ v = a.coeffs // b
return Taylor1(v, a.order)
end
for T in (:Taylor1, :HomogeneousPolynomial, :TaylorN)
@eval function /(a::$T{T}, b::S) where {T<:NumberNotSeries,S<:NumberNotSeries}
@inbounds aux = a.coeffs[1] / b
v = Array{typeof(aux)}(undef, length(a.coeffs))
@__dot__ v = a.coeffs / b
return $T(v, a.order)
end
@eval function /(a::$T{T}, b::T) where {T<:Number}
@inbounds aux = a.coeffs[1] / b
v = Array{typeof(aux)}(undef, length(a.coeffs))
@__dot__ v = a.coeffs / b
return $T(v, a.order)
end
end
for T in (:HomogeneousPolynomial, :TaylorN)
@eval function /(b::$T{Taylor1{S}}, a::Taylor1{T}) where
{T<:NumberNotSeries,S<:NumberNotSeries}
@inbounds aux = b.coeffs[1] / a
R = typeof(aux)
coeffs = Array{R}(undef, length(b.coeffs))
@__dot__ coeffs = b.coeffs / a
return $T(coeffs, b.order)
end
@eval function /(b::Taylor1{$T{S}}, a::$T{T}) where
{T<:NumberNotSeries,S<:NumberNotSeries}
@inbounds aux = b[0] / a
R = typeof(aux)
coeffs = Array{R}(undef, length(b.coeffs))
@__dot__ coeffs = b.coeffs / a
return Taylor1(coeffs, b.order)
end
end
/(a::Taylor1{T}, b::Taylor1{S}) where {T<:Number,S<:Number} = /(promote(a,b)...)
function /(a::Taylor1{T}, b::Taylor1{T}) where {T<:Number}
iszero(a) && !iszero(b) && return zero(a)
if a.order != b.order
a, b = fixorder(a, b)
end
# order and coefficient of first factorized term
ordfact, cdivfact = divfactorization(a, b)
c = Taylor1(cdivfact, a.order-ordfact)
for ord in eachindex(c)
div!(c, a, b, ord) # updates c[ord]
end
return c
end
/(a::TaylorN{T}, b::TaylorN{S}) where
{T<:NumberNotSeriesN,S<:NumberNotSeriesN} = /(promote(a,b)...)
function /(a::TaylorN{T}, b::TaylorN{T}) where {T<:NumberNotSeriesN}
@assert !iszero(constant_term(b))
if a.order != b.order
a, b = fixorder(a, b)
end
# first coefficient
@inbounds cdivfact = a[0] / constant_term(b)
c = TaylorN(cdivfact, a.order)
for ord in eachindex(c)
div!(c, a, b, ord) # updates c[ord]
end
return c
end
@inline function divfactorization(a1::Taylor1, b1::Taylor1)
# order of first factorized term; a1 and b1 assumed to be of the same order
a1nz = findfirst(a1)
b1nz = findfirst(b1)
a1nz = a1nz ≥ 0 ? a1nz : a1.order
b1nz = b1nz ≥ 0 ? b1nz : a1.order
ordfact = min(a1nz, b1nz)
cdivfact = a1[ordfact] / b1[ordfact]
# Is the polynomial factorizable?
iszero(b1[ordfact]) && throw( ArgumentError(
"""Division does not define a Taylor1 polynomial;
order k=$(ordfact) => coeff[$(ordfact)]=$(cdivfact).""") )
return ordfact, cdivfact
end
## TODO: Implement factorization (divfactorization) for TaylorN polynomials
# Homogeneous coefficient for the division
@doc doc"""
div!(c, a, b, k::Int)
Compute the `k-th` expansion coefficient `c[k]` of `c = a / b`,
where all `c`, `a` and `b` are either `Taylor1` or `TaylorN`.
The coefficients are given by
```math
c_k = \frac{1}{b_0} \big(a_k - \sum_{j=0}^{k-1} c_j b_{k-j}\big).
```
For `Taylor1` polynomials, a similar formula is implemented which
exploits `k_0`, the order of the first non-zero coefficient of `a`.
""" div!
@inline function div!(c::Taylor1, a::Taylor1, b::Taylor1, k::Int)
# order and coefficient of first factorized term
ordfact, cdivfact = divfactorization(a, b)
if k == 0
@inbounds c[0] = cdivfact
return nothing
end
imin = max(0, k+ordfact-b.order)
@inbounds c[k] = c[imin] * b[k+ordfact-imin]
@inbounds for i = imin+1:k-1
c[k] += c[i] * b[k+ordfact-i]
end
if k+ordfact ≤ b.order
@inbounds c[k] = (a[k+ordfact]-c[k]) / b[ordfact]
else
@inbounds c[k] = - c[k] / b[ordfact]
end
return nothing
end
@inline function div!(v::Taylor1, a::Taylor1, b::NumberNotSeries, k::Int)
@inbounds v[k] = a[k] / b
return nothing
end
div!(v::Taylor1, b::NumberNotSeries, a::Taylor1, k::Int) =
div!(v::Taylor1, Taylor1(b, a.order), a, k)
@inline function div!(c::TaylorN, a::TaylorN, b::TaylorN, k::Int)
if k==0
@inbounds c[0] = a[0] / constant_term(b)
return nothing
end
@inbounds for i = 0:k-1
mul!(c[k], c[i], b[k-i])
end
@inbounds c[k] = (a[k] - c[k]) / constant_term(b)
return nothing
end
"""
mul!(Y, A, B)
Multiply A*B and save the result in Y.
"""
function mul!(y::Vector{Taylor1{T}},
a::Union{Matrix{T},SparseMatrixCSC{T}},
b::Vector{Taylor1{T}}) where {T<:Number}
n, k = size(a)
@assert (length(y)== n && length(b)== k)
# determine the maximal order of b
# order = maximum([b1.order for b1 in b])
order = maximum(get_order.(b))
# Use matrices of coefficients (of proper size) and mul!
# B = zeros(T, k, order+1)
B = Array{T}(undef, k, order+1)
B = zero.(B)
for i = 1:k
@inbounds ord = b[i].order
@inbounds for j = 1:ord+1
B[i,j] = b[i][j-1]
end
end
Y = Array{T}(undef, n, order+1)
mul!(Y, a, B)
@inbounds for i = 1:n
# y[i] = Taylor1( collect(Y[i,:]), order)
y[i] = Taylor1( Y[i,:], order)
end
return y
end
# Adapted from (Julia v1.2) stdlib/v1.2/LinearAlgebra/src/dense.jl#721-734,
# licensed under MIT "Expat".
# Specialize a method of `inv` for Matrix{Taylor1{T}}. Simply, avoid pivoting,
# since the polynomial field is not an ordered one.
# function Base.inv(A::StridedMatrix{Taylor1{T}}) where T
# checksquare(A)
# S = Taylor1{typeof((one(T)*zero(T) + one(T)*zero(T))/one(T))}
# AA = convert(AbstractArray{S}, A)
# if istriu(AA)
# Ai = triu!(parent(inv(UpperTriangular(AA))))
# elseif istril(AA)
# Ai = tril!(parent(inv(LowerTriangular(AA))))
# else
# # Do not use pivoting !!
# Ai = inv!(lu(AA, Val(false)))
# Ai = convert(typeof(parent(Ai)), Ai)
# end
# return Ai
# end
# Adapted from (Julia v1.2) stdlib/v1.2/LinearAlgebra/src/lu.jl#240-253
# and (Julia v1.4.0-dev) stdlib/LinearAlgebra/v1.4/src/lu.jl#270-274,
# licensed under MIT "Expat".
# Specialize a method of `lu` for Matrix{Taylor1{T}}, which avoids pivoting,
# since the polynomial field is not an ordered one.
# We can't assume an ordered field so we first try without pivoting
function lu(A::AbstractMatrix{Taylor1{T}}; check::Bool = true) where {T<:Number}
S = Taylor1{lutype(T)}
F = lu!(copy_oftype(A, S), Val(false); check = false)
if issuccess(F)
return F
else
return lu!(copy_oftype(A, S), Val(true); check = check)
end
end