-
Notifications
You must be signed in to change notification settings - Fork 18
/
chainedvector.jl
987 lines (893 loc) · 31.3 KB
/
chainedvector.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
"""
ChainedVector(arrays::Vector{<:AbstractVector})
Create a `ChainedVector` of a `Vector` of homogenously-typed `AbstractVector`.
The "chain" of input vectors will be treated as a single, long vector.
A full set of typical mutable operations are supported (e.g. `push!`, `append!`, etc.).
As implementation details, mutable operations on single elements (e.g. `setindex!`, `push!`)
operate in-place or mutate an existing chained array, while `append!`/`prepend!` are optimized
to "chain" the incoming array to the existing chained arrays.
"""
struct ChainedVector{T, A <: AbstractVector{T}} <: AbstractVector{T}
arrays::Vector{A}
inds::Vector{Int}
end
function ChainedVector(arrays::Vector{A}) where {A <: AbstractVector{T}} where {T}
inds = Vector{Int}(undef, length(arrays))
setinds!(arrays, inds)
return ChainedVector{T, A}(arrays, inds)
end
# case where the given arrays are not homogenous
function ChainedVector(arrays::Vector{<:AbstractVector})
T = Base.promote_eltypeof(arrays...)
arrayTs = map(arrays) do array
eltype(array) === T ? array : copyto!(similar(array, T), array)
end
return ChainedVector(arrayTs)
end
@inline function setinds!(arrays, inds)
cleanup!(arrays, inds)
x = 0
@inbounds for i = 1:length(arrays)
x += length(arrays[i])
inds[i] = x
end
return
end
@noinline cleanup!(x::ChainedVector) = cleanup!(x.arrays, x.inds)
@inline function cleanup!(arrays, inds)
@assert length(arrays) == length(inds)
mask_it = Base.Iterators.filter(i->isassigned(arrays, i) && length(arrays[i])>0, 1:length(arrays))
n = 0
for k in mask_it
n += 1
k > n || continue
arrays[n] = arrays[k]
inds[n] = inds[k]
end
resize!(arrays, n)
resize!(inds, n)
return
end
Base.IndexStyle(::Type{<:ChainedVector}) = Base.IndexLinear()
Base.size(x::ChainedVector) = (length(x.inds) == 0 ? 0 : x.inds[end],)
# interpolated search: better for very large (> 100) length(A.arrays)
# @inline function index(A::ChainedVector, i::Integer)
# inds = A.inds
# @inbounds interp = max(1, fld(i * length(inds), inds[end]))
# @inbounds ind = inds[interp]
# if i <= ind
# interp == 1 && return (1, i)
# @inbounds while interp > 1 && i <= inds[interp - 1]
# interp -= 1
# end
# return interp == 1 ? (1, i) : (interp, i - @inbounds(inds[interp - 1]))
# else
# chunk = searchsortedfirst(A.inds, i)
# return chunk, i - (chunk == 1 ? 0 : @inbounds A.inds[chunk - 1])
# end
# end
# linear search: better for small (< 30) length(A.arrays)
# @inline function index(A::ChainedVector, i::Integer)
# inds = A.inds
# chunk = 1
# @inbounds ind = inds[chunk]
# while i > ind
# chunk += 1
# @inbounds ind = inds[chunk]
# end
# return chunk, i - (chunk == 1 ? 0 : @inbounds inds[chunk - 1])
# end
# binary search
@inline function index(A::ChainedVector, i::Integer)
@inbounds chunk = searchsortedfirst(A.inds, i)
return chunk, i - (chunk == 1 ? 0 : @inbounds A.inds[chunk - 1])
end
Base.@propagate_inbounds function Base.getindex(A::ChainedVector, i::Integer)
@boundscheck checkbounds(A, i)
chunk, ix = index(A, i)
@inbounds x = A.arrays[chunk][ix]
return x
end
@inline function linearindex(x::ChainedVector, chunk, chunklen, j, i, i2)
# i2 == 0 && throw(BoundsError(x, i2))
i == i2 && return chunk, chunklen, j
diff = i2 - i
if diff > 0
# linear search forward
# quick check if we're in the same chunk
if j + diff <= chunklen
# fastest path
return chunk, chunklen, j + diff
end
inds = x.inds
chunk += 1
N = length(x.arrays)
# chunk > N && throw(BoundsError(x, i2))
@inbounds ind = inds[chunk]
while i2 > ind
chunk += 1
# chunk > N && throw(BoundsError(x, i2))
@inbounds ind = inds[chunk]
end
# chunk now points to correct chunk where i2 is found
@inbounds chunklen = length(x.arrays[chunk])
# convert to local chunk index
return chunk, chunklen, chunklen - (ind - i2)
end
# linear search backward
# quick check if we're in the same chunk
if j + diff >= 1
# fastest path
return chunk, chunklen, j + diff
end
inds = x.inds
chunk -= 1
# chunk == 0 && throw(BoundsError(x, i2))
@inbounds ind = inds[chunk]
while chunk > 1 && i2 <= inds[chunk - 1]
chunk -= 1
@inbounds ind = inds[chunk]
end
# chunk now points to correct chunk where i2 is found
@inbounds chunklen = length(x.arrays[chunk])
# convert to local chunk index
return chunk, chunklen, chunklen - (ind - i2)
end
function over(len, N=Threads.nthreads())
nlen, r = divrem(len, N)
return (((i - 1) * nlen + 1, i * nlen + ifelse(i == N, r, 0)) for i = 1:N)
end
Base.@propagate_inbounds function Base.getindex(x::ChainedVector{T, A}, inds::AbstractVector{Int}) where {T, A}
len = length(inds)
arrays = x.arrays
if len == 0
if isempty(arrays)
return similar(eltype(arrays), 0)
else
return similar(arrays[1], 0)
end
end
res = similar(arrays[1], len) # out of bounds if `arrays` is empty
# N = Threads.nthreads()
# ranges = (((j - 1) * div(len, N) + 1, j == N ? len : j * div(len, N) + 1) for j = 1:N)
# @sync for (start, stop) in ranges
# Threads.@spawn begin
# chunk = j = ind = 1
# chunklen = length(x.arrays[1])
# arrays = x.arrays
# for i = start:stop
# @inbounds ind2 = inds[i]
# # @boundscheck checkbounds(x, ind2)
# chunk, chunklen, j = linearindex(x, chunk, chunklen, j, ind, ind2)
# @inbounds res[i] = arrays[chunk][j]
# ind = ind2
# end
# end
# end
chunk = j = ind = 1
chunklen = length(arrays[1])
for (i, ind2) in zip(eachindex(res), inds)
chunk, chunklen, j = linearindex(x, chunk, chunklen, j, ind, ind2)
@inbounds res[i] = arrays[chunk][j]
ind = ind2
end
return res
end
Base.@propagate_inbounds function Base.getindex(x::ChainedVector{T, A}, inds::UnitRange{Int}) where {T, A}
arrays = x.arrays
len = length(inds)
if len == 0
if isempty(arrays)
return similar(eltype(arrays), 0)
else
return similar(arrays[1], 0)
end
end
# linearindex first item
chunk = ind = j = 1
chunklen = length(arrays[chunk]) # out of bounds if `arrays` is empty
chunk, chunklen, j = linearindex(x, chunk, chunklen, j, ind, inds[1])
# first chunk to be copied
@inbounds arraychunk = arrays[chunk]
chunklen = chunklen - j + 1 # remaining elements in the chunk, starting from index j
# now we can copy entire chunks and avoid further linear indexing
res = similar(arraychunk, len)
i = 1
# copy all but the last chunk (always all elements copied)
while chunklen < len
copyto!(res, i, arraychunk, j, chunklen)
len -= chunklen
i += chunklen
# prepare next chunk
chunk += 1
arraychunk = arrays[chunk]
chunklen = length(arraychunk)
j = 1
end
# copy last chunk (possibly incompletely)
copyto!(res, i, arraychunk, j, len)
return res
end
Base.@propagate_inbounds function Base.isassigned(A::ChainedVector, i::Integer)
@boundscheck checkbounds(A, i)
chunk, ix = index(A, i)
return @inbounds isassigned(A.arrays[chunk], ix)
end
Base.@propagate_inbounds function Base.setindex!(A::ChainedVector, v, i::Integer)
@boundscheck checkbounds(A, i)
chunk, ix = index(A, i)
@inbounds A.arrays[chunk][ix] = v
return v
end
# custom index type used in eachindex
struct ChainedVectorIndex{A} <: Integer
arrays_i::Int
array::A
array_i::Int
i::Int
end
import Base: +, -, *, <, >, <=, >=, ==
for f in (:+, :-, :*, :<, :>, :<=, :>=, :(==))
@eval $f(a::ChainedVectorIndex, b::Integer) = $f(a.i, b)
@eval $f(a::Integer, b::ChainedVectorIndex) = $f(a, b.i)
@eval $f(a::ChainedVectorIndex, b::ChainedVectorIndex) = $f(a.i, b.i)
end
Base.convert(::Type{T}, x::ChainedVectorIndex) where {T <: Union{Signed, Unsigned}} = convert(T, x.i)
Base.hash(x::ChainedVectorIndex, h::UInt) = hash(x.i, h)
@inline Base.getindex(x::ChainedVectorIndex) = @inbounds x.array[x.array_i]
function Base.checkbounds(::Type{Bool}, A::ChainedVector, ind::ChainedVectorIndex)
@assert ind.array === A.arrays[ind.arrays_i] "indexing ChainedVector with wrong ChainedVectorIndex"
return 1 <= ind.array_i <= length(ind.array)
end
Base.@propagate_inbounds function Base.getindex(A::ChainedVector, x::ChainedVectorIndex)
@boundscheck checkbounds(A, x)
return @inbounds x.array[x.array_i]
end
Base.@propagate_inbounds function Base.setindex!(A::ChainedVector, v, x::ChainedVectorIndex)
@boundscheck checkbounds(A, x)
@inbounds x.array[x.array_i] = v
return v
end
function Base.getindex(A::ChainedVector{T}, inds::AbstractVector{<:ChainedVectorIndex}) where {T}
len = length(inds)
x = Vector{T}(undef, len)
for i = 1:len
x[i] = inds[i][]
end
return x
end
function Base.nextind(A::ChainedVector, x::ChainedVectorIndex)
chunkidx = x.arrays_i
chunk = x.array
chunk_i = x.array_i
i = x.i
if chunk_i < length(chunk)
chunk_i += 1
i += 1
elseif chunkidx < length(A.arrays)
chunkidx += 1
@inbounds chunk = A.arrays[chunkidx]
chunk_i = 1
i += 1
else
chunk_i += 1 # make sure this goes out of bounds
end
return ChainedVectorIndex(chunkidx, chunk, chunk_i, i)
end
function Base.prevind(A::ChainedVector, x::ChainedVectorIndex)
chunkidx = x.arrays_i
chunk = x.array
chunk_i = x.array_i
i = x.i
if chunk_i > 1
chunk_i -= 1
i -= 1
elseif chunkidx > 1
chunkidx -= 1
@inbounds chunk = A.arrays[chunkidx]
chunk_i = length(chunk)
i -= 1
else
chunk_i -= 1 # make sure this goes out of bounds
end
return ChainedVectorIndex(chunkidx, chunk, chunk_i, i)
end
# efficient iteration via eachindex
struct IndexIterator{A}
arrays::Vector{A}
end
Base.size(x::IndexIterator) = (length(x),)
Base.length(x::IndexIterator) = sum(length, x.arrays)
Base.eltype(::Type{IndexIterator{A}}) where {A <: AbstractVector} = ChainedVectorIndex{A}
@inline function Base.eachindex(A::ChainedVector)
# check for and remove any empty chunks
cleanup!(A)
return IndexIterator(A.arrays)
end
@inline function Base.iterate(x::IndexIterator)
arrays = x.arrays
length(arrays) == 0 && return nothing
chunkidx = chunk_i = 1
@inbounds chunk = arrays[chunkidx]
# we already ran cleanup! so chunks are guaranteed non-empty
return ChainedVectorIndex(chunkidx, chunk, chunk_i, 1), (arrays, chunkidx, chunk, length(chunk), chunk_i + 1, 2)
end
@inline function Base.iterate(x::IndexIterator, (arrays, chunkidx, chunk, chunklen, chunk_i, i))
if chunk_i > chunklen
chunkidx += 1
chunkidx > length(arrays) && return nothing
@inbounds chunk = arrays[chunkidx]
chunklen = length(chunk)
chunk_i = 1
end
return ChainedVectorIndex(chunkidx, chunk, chunk_i, i), (arrays, chunkidx, chunk, chunklen, chunk_i + 1, i + 1)
end
@inline function Base.iterate(A::ChainedVector)
idx = eachindex(A)
state = iterate(idx)
state === nothing && return nothing
ci, st = state
return ci[], (idx, st)
end
@inline function Base.iterate(A::ChainedVector, (idx, st))
state = iterate(idx, st)
state === nothing && return nothing
ci, st = state
return ci[], (idx, st)
end
# other AbstractArray functions
Base.similar(x::ChainedVector) = similar(x, length(x))
Base.similar(x::ChainedVector{T}, len::Base.DimOrInd) where {T} = similar(x, T, len)
function Base.similar(x::ChainedVector{T}, ::Type{S}, _len::Base.DimOrInd=length(x)) where {T, S}
len = _len isa Integer ? _len : length(_len)
if len == length(x)
# return same chunks structure as x
return ChainedVector([similar(A, S, length(A)) for A in x.arrays])
end
# otherwise, split the different new len over existing # of chunks in x
N = length(x.arrays)
if N == 0
return ChainedVector([similar(eltype(x.arrays), len)])
elseif len <= N
return ChainedVector([similar(x.arrays[1], S, len)])
end
nlen, r = divrem(len, N)
return ChainedVector([similar(A, S, nlen + (i == N ? r : 0)) for (i, A) in enumerate(x.arrays)])
end
Base.copyto!(dest::ChainedVector, src::AbstractVector) =
copyto!(dest, 1, src, 1, length(src))
Base.copyto!(dest::ChainedVector, doffs::Union{Signed, Unsigned}, src::AbstractVector) =
copyto!(dest, doffs, src, 1, length(src))
Base.copyto!(dest::ChainedVector, doffs::Union{Signed, Unsigned}, src::AbstractVector, soffs::Union{Signed, Unsigned}) =
copyto!(dest, doffs, src, soffs, length(src) - soffs + 1)
function Base.copyto!(dest::ChainedVector{T}, doffs::Union{Signed, Unsigned},
src::AbstractVector, soffs::Union{Signed, Unsigned}, n::Union{Signed, Unsigned}) where {T}
n < 0 && throw(ArgumentError(string("tried to copy n=", n, " elements, but n should be nonnegative")))
(doffs > 0 && (doffs + n - 1) <= length(dest) &&
soffs > 0 && (soffs + n - 1) <= length(src)) || throw(ArgumentError("out of range arguments to copyto! on ChainedVector"))
n == 0 && return dest
N = length(dest.inds)
# find first chunk where we'll start copying to
aidx, _ = index(dest, doffs)
prevind = aidx == 1 ? 0 : dest.inds[aidx - 1]
while true
# aidx now points to chunk where we need to copy
A = dest.arrays[aidx]
# now compute how many elements to copy to this chunk
off = doffs - prevind
chunkn = min(length(A) - off + 1, n)
copyto!(A, off, view(src, soffs:(soffs + chunkn - 1)))
soffs += chunkn
n -= chunkn
prevind = dest.inds[aidx]
aidx += 1
(aidx > N || n == 0) && break
doffs = prevind + 1
end
return dest
end
Base.copyto!(dest::AbstractVector, src::ChainedVector) =
copyto!(dest, 1, src, 1, length(src))
Base.copyto!(dest::AbstractVector, doffs::Union{Signed, Unsigned}, src::ChainedVector) =
copyto!(dest, doffs, src, 1, length(src))
Base.copyto!(dest::AbstractVector, doffs::Union{Signed, Unsigned}, src::ChainedVector, soffs::Union{Signed, Unsigned}) =
copyto!(dest, doffs, src, soffs, length(src) - soffs + 1)
function Base.copyto!(dest::AbstractVector{T}, doffs::Union{Signed, Unsigned},
src::ChainedVector, soffs::Union{Signed, Unsigned}, n::Union{Signed, Unsigned}) where {T}
n < 0 && throw(ArgumentError(string("tried to copy n=", n, " elements, but n should be nonnegative")))
(doffs > 0 && (doffs + n - 1) <= length(dest) &&
soffs > 0 && (soffs + n - 1) <= length(src)) || throw(ArgumentError("out of range arguments to copyto! on ChainedVector"))
n == 0 && return dest
N = length(src.inds)
# find first chunk where we'll start copying from
aidx, i = index(src, soffs)
while true
# aidx now points to chunk where we need to copy from
A = src.arrays[aidx]
chunkn = min(length(A) - i + 1, n)
copyto!(dest, doffs, view(A, i:(i + chunkn - 1)))
n -= chunkn
aidx += 1
(aidx > N || n == 0) && break
doffs += chunkn
i = 1
end
return dest
end
Base.copyto!(dest::ChainedVector, src::ChainedVector) =
copyto!(dest, 1, src, 1, length(src))
Base.copyto!(dest::ChainedVector, doffs::Union{Signed, Unsigned}, src::ChainedVector) =
copyto!(dest, doffs, src, 1, length(src))
Base.copyto!(dest::ChainedVector, doffs::Union{Signed, Unsigned}, src::ChainedVector, soffs::Union{Signed, Unsigned}) =
copyto!(dest, doffs, src, soffs, length(src) - soffs + 1)
function Base.copyto!(dest::ChainedVector{T}, doffs::Union{Signed, Unsigned},
src::ChainedVector, soffs::Union{Signed, Unsigned}, n::Union{Signed, Unsigned}) where {T}
n < 0 && throw(ArgumentError(string("tried to copy n=", n, " elements, but n should be nonnegative")))
(doffs > 0 && (doffs + n - 1) <= length(dest) &&
soffs > 0 && (soffs + n - 1) <= length(src)) || throw(ArgumentError("out of range arguments to copyto! on ChainedVector"))
n == 0 && return dest
cleanup!(src)
# find first chunk where we'll start copying to
dN = length(dest.inds)
didx, di = index(dest, doffs)
dchunk = dest.arrays[didx]
# find first chunk where we'll start copying from
sN = length(src.inds)
sidx, si = index(src, soffs)
schunk = src.arrays[sidx]
while true
dlen = length(dchunk) - di + 1
slen = length(schunk) - si + 1
chunkn = min(dlen, slen, n)
copyto!(dchunk, di, schunk, si, chunkn)
n -= chunkn
n == 0 && break
if chunkn == dlen
didx += 1
@inbounds dchunk = dest.arrays[didx]
di = 1
else
di += chunkn
end
if chunkn == slen
sidx += 1
@inbounds schunk = src.arrays[sidx]
si = 1
else
si += chunkn
end
end
return dest
end
function Base.empty!(A::ChainedVector)
empty!(A.arrays)
empty!(A.inds)
return A
end
function Base.copy(A::ChainedVector{T}) where {T}
isempty(A) && return T[]
B = similar(A.arrays[1], length(A))
off = 1
for arr in A.arrays
n = length(arr)
copyto!(B, off, arr, 1, n)
off += n
end
return B
end
function Base.unaliascopy(x::ChainedVector{T, A}) where {T, A}
arrays = map(copy, x.arrays)
return ChainedVector{T, A}(arrays, copy(x.inds))
end
function Base.resize!(A::ChainedVector{T, AT}, len) where {T, AT}
len >= 0 || throw(ArgumentError("`len` must be >= 0 when resizing ChainedVector"))
len′ = length(A)
if len′ < len
# growing
push!(A.arrays, similar(AT, len - len′))
push!(A.inds, len)
else
# shrinking
chunk = searchsortedfirst(A.inds, len)
# get rid of any excess chunks
resize!(A.arrays, chunk)
resize!(A.inds, chunk)
# resize individual chunk
resize!(A.arrays[chunk], length(A.arrays[chunk]) - (A.inds[chunk] - len))
A.inds[chunk] = len
end
return A
end
function Base.push!(A::ChainedVector{T, AT}, val) where {T, AT}
if length(A.arrays) == 0
push!(A.arrays, similar(AT, 0))
push!(A.inds, 0)
end
@inbounds push!(A.arrays[end], val)
@inbounds A.inds[end] += 1
return A
end
function Base.pushfirst!(A::ChainedVector{T, AT}, val) where {T, AT}
if length(A.arrays) == 0
push!(A.arrays, similar(AT, 0))
push!(A.inds, 0)
end
@inbounds pushfirst!(A.arrays[1], val)
for i = 1:length(A.inds)
@inbounds A.inds[i] += 1
end
return A
end
Base.@propagate_inbounds function Base.deleteat!(A::ChainedVector, i::Integer)
@boundscheck checkbounds(A, i)
chunk, ix = index(A, i)
deleteat!(A.arrays[chunk], ix)
for j = chunk:length(A.inds)
@inbounds A.inds[j] -= 1
end
# check if we should remove an empty chunk
cleanup!(A)
return A
end
Base.@propagate_inbounds function Base.deleteat!(A::ChainedVector, inds)
y = iterate(inds)
y === nothing && return A
i, s = y
chunk = 1
N = length(A.inds)
prevind = 0
ind = chunk > N ? 0 : A.inds[chunk]
todelete = Int[]
while y !== nothing
# find chunk where deleting starts
while ind < i
chunk += 1
chunk > N && throw(BoundsError(A, i))
prevind = ind
@inbounds ind = A.inds[chunk]
end
# gather all indices for this chunk
while i <= ind
push!(todelete, i - prevind)
y = iterate(inds, s)
y === nothing && break
i, s = y
end
# delete indices from this chunk
@inbounds deleteat!(A.arrays[chunk], todelete)
empty!(todelete)
end
# reset inds
x = 0
@inbounds for j = 1:N
# note that A.arrays[j] can have zero length
len = length(A.arrays[j])
if len == 0
push!(todelete, j)
else
x += len
A.inds[j] = x
end
end
for j in Iterators.reverse(todelete)
deleteat!(A.arrays, j)
deleteat!(A.inds, j)
end
return A
end
Base.@propagate_inbounds function Base.deleteat!(A::ChainedVector, inds::AbstractVector{Bool})
length(inds) == length(A) || throw(BoundsError(A, inds))
prevind = 0
for array in A.arrays
len = length(array)
deleteat!(array, view(inds, (prevind + 1):(prevind + len)))
prevind += len
end
setinds!(A.arrays, A.inds)
return A
end
function Base.pop!(A::ChainedVector)
if isempty(A)
throw(ArgumentError("array must be non-empty"))
end
item = A[end]
deleteat!(A, length(A))
return item
end
function Base.popfirst!(A::ChainedVector)
if isempty(A)
throw(ArgumentError("array must be non-empty"))
end
item = A[1]
deleteat!(A, 1)
return item
end
Base.@propagate_inbounds function Base.insert!(A::ChainedVector{T, AT}, i::Integer, item) where {T, AT <: AbstractVector{T}}
i isa Bool && throw(ArgumentError("invalid index: $i of type Bool"))
if i == 1 && length(A.arrays) == 0
push!(A.arrays, similar(AT, 0))
push!(A.inds, 0)
chunk, ix = 1, 1
else
@boundscheck checkbounds(A, i)
chunk, ix = index(A, i)
end
insert!(A.arrays[chunk], ix, item)
for j = chunk:length(A.inds)
@inbounds A.inds[j] += 1
end
return A
end
function Base.vcat(A::ChainedVector{T, AT}, arrays::ChainedVector{T, AT}...) where {T, AT <: AbstractVector{T}}
newarrays = vcat(A.arrays, map(x->x.arrays, arrays)...)
n = length(A.inds)
inds = Vector{Int}(undef, n + sum(x->length(x.inds), arrays))
copyto!(inds, 1, A.inds, 1, n)
m = n + 1
for x in arrays
for y in x.arrays
@inbounds inds[m] = ((m - 1) == 0 ? 0 : inds[m - 1]) + length(y)
m += 1
end
end
return ChainedVector{T, AT}(newarrays, inds)
end
function Base.append!(A::ChainedVector{T, AT}, B::AT) where {T, AT <: AbstractVector{T}}
lastind = length(A.arrays) == 0 ? 0 : A.inds[end]
push!(A.arrays, B)
push!(A.inds, lastind + length(B))
return A
end
function Base.append!(A::ChainedVector{T, AT}, B::ChainedVector{T, AT}) where {T, AT <: AbstractVector{T}}
append!(A.arrays, B.arrays)
n = length(A.inds)
m = length(B.inds)
resize!(A.inds, n + m)
for i = 1:m
@inbounds A.inds[n + i] = ((n + i - 1) == 0 ? 0 : A.inds[n + i - 1]) + length(B.arrays[i])
end
return A
end
function Base.append!(A::ChainedVector{T}, B) where {T}
for x in B
push!(A, x)
end
return A
end
function Base.prepend!(A::ChainedVector{T, AT}, B::AT) where {T, AT <: AbstractVector{T}}
pushfirst!(A.arrays, B)
n = length(B)
pushfirst!(A.inds, n)
for i = 2:length(A.inds)
@inbounds A.inds[i] += n
end
return A
end
function Base.prepend!(A::ChainedVector{T, AT}, B::ChainedVector{T, AT}) where {T, AT <: AbstractVector{T}}
prepend!(A.arrays, B.arrays)
n = length(A.inds)
m = length(B.inds)
M = length(B)
prepend!(A.inds, B.inds)
for i = 1:n
@inbounds A.inds[m + i] += M
end
return A
end
function Base.prepend!(A::ChainedVector{T}, B) where {T}
for (i, x) in enumerate(B)
insert!(A, i, x)
end
return A
end
Base.in(x, A::ChainedVector) = any(y->x in y, A.arrays)
Base.foreach(f::F, x::ChainedVector) where {F} = foreach(x->foreach(f, x), x.arrays)
Base.map(f::F, x::ChainedVector) where {F} = ChainedVector([map(f, y) for y in x.arrays])
# function Base.map(f::F, x::ChainedVector) where {F}
# tasks = map(A -> Threads.@spawn(map(f, A)), x.arrays)
# ChainedVector([fetch(tsk) for tsk in tasks])
# end
function Base.map!(f::F, A::AbstractVector, x::ChainedVector) where {F}
length(A) >= length(x) || throw(ArgumentError("destination must be at least as long as map! source"))
idx = eachindex(A)
st = iterate(idx)
for array in x.arrays
for y in array
@inbounds A[st[1]] = f(y)
st = iterate(idx, st[2])
end
end
return A
end
function Base.map!(f::F, x::ChainedVector, A::AbstractVector) where {F}
length(x) >= length(A) || throw(ArgumentError("destination must be at least as long as map! source"))
idx = eachindex(A)
st = iterate(idx)
for array in x.arrays
for j in eachindex(array)
@inbounds array[j] = f(A[st[1]])
st = iterate(idx, st[2])
end
end
return x
end
function Base.map!(f::F, x::ChainedVector, y::ChainedVector{T}) where {F, T}
length(x) >= length(y) || throw(ArgumentError("destination must be at least as long as map! source"))
# check for potential fastpath
N = length(y.arrays)
if length(x.arrays) == N
match = true
for i = 1:N
@inbounds match &= length(x.arrays[i]) == length(y.arrays[i])
end
if match
# common when x was created like `similar(y, length(x))`
for i = 1:length(x.arrays)
@inbounds map!(f, x.arrays[i], y.arrays[i])
end
return x
end
end
# slower path
cleanup!(y)
yidx = yi = 1
@inbounds ychunk = y.arrays[yidx]
ychunklen = length(ychunk)
for array in x.arrays
for j in eachindex(array)
@inbounds array[j] = f(ychunk[yi])
yi += 1
if yi > ychunklen
yi = 1
yidx += 1
yidx > N && @goto done
@inbounds ychunk = y.arrays[yidx]
ychunklen = length(ychunk)
end
end
end
@label done
return x
end
Base.any(f::Function, x::ChainedVector) = any(y -> any(f, y), x.arrays)
Base.any(x::ChainedVector) = any(y -> any(y), x.arrays)
Base.all(f::Function, x::ChainedVector) = all(y -> all(f, y), x.arrays)
Base.all(x::ChainedVector) = all(y -> all(y), x.arrays)
Base.reduce(op::OP, x::ChainedVector) where {OP} = reduce(op, (reduce(op, y) for y in x.arrays))
Base.foldl(op::OP, x::ChainedVector) where {OP} = foldl(op, (foldl(op, y) for y in x.arrays))
Base.foldr(op::OP, x::ChainedVector) where {OP} = foldr(op, (foldr(op, y) for y in x.arrays))
Base.mapreduce(f::F, op::OP, x::ChainedVector) where {F, OP} = reduce(op, (mapreduce(f, op, y) for y in x.arrays))
Base.mapfoldl(f::F, op::OP, x::ChainedVector) where {F, OP} = foldl(op, (mapfoldl(f, op, y) for y in x.arrays))
Base.mapfoldr(f::F, op::OP, x::ChainedVector) where {F, OP} = foldr(op, (mapfoldr(f, op, y) for y in x.arrays))
Base.count(f::F, x::ChainedVector) where {F} = isempty(x) ? 0 : sum(count(f, y) for y in x.arrays)
Base.count(x::ChainedVector) = isempty(x) ? 0 : sum(count(y) for y in x.arrays)
Base.extrema(x::ChainedVector) = extrema(identity, x)
function Base.extrema(f::F, x::ChainedVector) where {F}
isempty(x) && throw(ArgumentError("collection must be non-empty"))
mi = ma = nothing
for A in x.arrays
mi2, ma2 = extrema(f, A)
if mi === nothing || mi2 < mi
mi = mi2
end
if ma === nothing || ma2 > ma
ma = ma2
end
end
return mi, ma
end
function Base.findmax(f::F, x::ChainedVector) where {F}
isempty(x) && throw(ArgumentError("collection must be non-empty"))
cleanup!(x) # get rid of any empty arrays
i = 1
y = f(x.arrays[1][1])
# x > y iff y < x for a well ordered set
# nb. isgreater = !isless is not correct. That is `>=`
isgreater(x, y) = isless(y, x)
return findXwithfirst(isgreater, f, x, y, i)
end
function Base.findmin(f::F, x::ChainedVector) where {F}
isempty(x) && throw(ArgumentError("collection must be non-empty"))
cleanup!(x) # get rid of any empty arrays
i = 1
y = f(x.arrays[1][1])
return findXwithfirst(isless, f, x, y, i)
end
function findXwithfirst(comp, f, x, y, i)
i′ = 1
for A in x.arrays
for y′ in A
y′′ = f(y′)
c = comp(y′′, y) # store this before y changes
y = ifelse(c, y′′, y)
i = ifelse(c, i′, i)
i′ += 1
end
end
return y, i
end
Base.findmax(x::ChainedVector) = findmax(identity, x)
Base.findmin(x::ChainedVector) = findmin(identity, x)
Base.argmax(x::ChainedVector) = findmax(identity, x)[2]
Base.argmin(x::ChainedVector) = findmin(identity, x)[2]
Base.argmax(f::F, x::ChainedVector) where {F} = x[findmax(f, x)[2]]
Base.argmin(f::F, x::ChainedVector) where {F} = x[findmin(f, x)[2]]
function Base.findfirst(f::Function, x::ChainedVector)
prevind = 0
for array in x.arrays
res = findfirst(f, array)
res !== nothing && return prevind + res
prevind += length(array)
end
return nothing
end
Base.findfirst(x::ChainedVector{Bool}) = findfirst(identity, x)
function Base.findlast(f::Function, x::ChainedVector)
for i = length(x.arrays):-1:1
@inbounds array = x.arrays[i]
res = findlast(f, array)
res !== nothing && return (i == 1 ? 0 : x.inds[i - 1]) + res
end
return nothing
end
Base.findlast(x::ChainedVector{Bool}) = findlast(identity, x)
Base.@propagate_inbounds function Base.findnext(f::Function, x::ChainedVector, start)
chunk, ix = index(x, start)
for i = chunk:length(x.arrays)
res = findnext(f, x.arrays[i], ix)
res !== nothing && return (i == 1 ? 0 : x.inds[i - 1]) + res
ix = 1
end
return nothing
end
Base.findnext(x::ChainedVector{Bool}, start) = findnext(identity, x, start)
Base.@propagate_inbounds function Base.findprev(f::Function, x::ChainedVector, start)
isempty(x) && return nothing
chunk, ix = index(x, start)
for i = chunk:-1:1
res = findprev(f, x.arrays[i], something(ix, length(x.arrays[i])))
res !== nothing && return (i == 1 ? 0 : x.inds[i - 1]) + res
ix = nothing
end
return nothing
end
Base.findprev(x::ChainedVector{Bool}, start) = findprev(identity, x, start)
function Base.findall(A::ChainedVector{Bool})
n = count(A)
I = Vector{eltype(keys(A))}(undef, n)
cnt = i = 1
for array in A.arrays
for a in array
if a
I[cnt] = i
cnt += 1
end
i += 1
end
end
return I
end
Base.findall(f::Function, x::ChainedVector) = findall(map(f, x))
function Base.filter(f, a::ChainedVector{T}) where {T}
j = 1
b = Vector{T}(undef, length(a))
for array in a.arrays
for ai in array
@inbounds b[j] = ai
j = ifelse(f(ai), j + 1, j)
end
end
resize!(b, j-1)
sizehint!(b, length(b))
return b
end
function Base.filter!(f, a::ChainedVector)
foreach(A -> filter!(f, A), a.arrays)
setinds!(a.arrays, a.inds)
return a
end
Base.replace(f::Base.Callable, a::ChainedVector) = ChainedVector([replace(f, A) for A in a.arrays])
Base.replace!(f::Base.Callable, a::ChainedVector) = (foreach(A -> replace!(f, A), a.arrays); return a)
Base.replace(a::ChainedVector, old_new::Pair...; count::Union{Integer,Nothing}=nothing) = ChainedVector([replace(A, old_new...; count=count) for A in a.arrays])
Base.replace!(a::ChainedVector, old_new::Pair...; count::Integer=typemax(Int)) = (foreach(A -> replace!(A, old_new...; count=count), a.arrays); return a)
Base.Broadcast.broadcasted(f::F, A::ChainedVector) where {F} = map(f, A)