diff --git a/example/juMPC.jl b/example/juMPC.jl index f352c5e3..0a04af23 100644 --- a/example/juMPC.jl +++ b/example/juMPC.jl @@ -62,6 +62,7 @@ updatestate!(ssKalmanFilter2,[1, 1],[1,1]) initstate!(ssKalmanFilter1,[0,0],[2,1]) uscKalmanFilter1 = UnscentedKalmanFilter(linModel1) + updatestate!(uscKalmanFilter1,[0,0],[2,1]) initstate!(uscKalmanFilter1,[0,0],[2,1]) @@ -130,7 +131,7 @@ function test_mpc(model, mpc) end @time u_data, y_data, r_data, d_data = test_mpc(linModel4, mpc) -#@profview u_data, y_data, r_data, d_data = test_mpc(linModel4, mpc) +@profview u_data, y_data, r_data, d_data = test_mpc(linModel4, mpc) #= using PlotThemes, Plots #theme(:default) diff --git a/src/predictive_control.jl b/src/predictive_control.jl index 9b18e23c..6cfb09d2 100644 --- a/src/predictive_control.jl +++ b/src/predictive_control.jl @@ -782,7 +782,7 @@ end Init `b` vector for the linear model inequality constraints (``\mathbf{A ΔŨ ≤ b}``). """ -function init_constraint(mpc, ::LinModel, F, lastu) +function init_constraint(mpc::C, ::LinModel, F, lastu) where {C<:PredictiveController} b = [ -mpc.Umin + mpc.T_Hc*lastu +mpc.Umax - mpc.T_Hc*lastu diff --git a/src/sim_model.jl b/src/sim_model.jl index 2a1e52c4..6773a401 100644 --- a/src/sim_model.jl +++ b/src/sim_model.jl @@ -161,8 +161,12 @@ function LinModel( C = sys_dis.C Dd = sys_dis.D[:,nu+1:end] # the `let` block captures and fixes A, Bu, Bd, C, Dd values (faster computations): - f(x, u, d) = A*x + Bu*u + Bd*d - h(x, d) = C*x + Dd*d + f = let A=A, Bu=Bu, Bd=Bd + (x, u, d) -> A*x + Bu*u + Bd*d + end + h = let C=C, Dd=Dd + (x, d) -> C*x + Dd*d + end return LinModel_ssfunc(A, Bu, C, Bd, Dd, f, h, Ts, nu, nx, ny, nd) end diff --git a/src/state_estim.jl b/src/state_estim.jl index 24aba185..32d0cab5 100644 --- a/src/state_estim.jl +++ b/src/state_estim.jl @@ -73,7 +73,7 @@ function stoch_ym2y(model::SimModel, i_ym, Asm, Bsm, Csm, Dsm) end @doc raw""" - init_estimstoch(model::SimModel, i_ym, nint_ym::Vector{Int}) + init_estimstoch(i_ym, nint_ym::Vector{Int}) Calc stochastic model matrices from output integrators specifications for state estimation. @@ -150,10 +150,10 @@ end @doc raw""" f̂(estim::StateEstimator, x̂, u, d) -Update the augmented model state for estimation. +State function ``\mathbf{f̂}`` of the augmented model. -By introducing an augmented state vector ``\mathbf{x}`` like in [`augment_model`](@ref) doc, -the ``\mathbf{f̂}`` method updates it from the augmented model, defined as : +By introducing an augmented state vector ``\mathbf{x}`` like in [`augment_model`](@ref), the +function returns the next state of the augmented model, defined as: ```math \begin{aligned} \mathbf{x}(k+1) &= \mathbf{f̂}\Big(\mathbf{x}(k), \mathbf{u}(k), \mathbf{d}(k)\Big) \\ @@ -162,8 +162,9 @@ the ``\mathbf{f̂}`` method updates it from the augmented model, defined as : ``` """ function f̂(estim::E, x̂, u, d) where {E<:StateEstimator} - # TODO: consider using views : https://docs.julialang.org/en/v1/manual/performance-tips/#man-performance-views - return [estim.model.f(x̂[1:estim.model.nx], u, d); estim.As*x̂[estim.model.nx+1:end]] + # `@views` macro avoid copies with matrix slice operator e.g. [a:b] + nx = estim.model.nx + @views return [estim.model.f(x̂[1:nx], u, d); estim.As*x̂[nx+1:end]] end @doc raw""" @@ -172,7 +173,9 @@ end Output function ``\mathbf{ĥ}`` of the augmented model, see [`f̂`](@ref) for details. """ function ĥ(estim::E, x̂, d) where {E<:StateEstimator} - return estim.model.h(x̂[1:estim.model.nx], d) + estim.Cs*x̂[estim.model.nx+1:end] + # `@views` macro avoid copies with matrix slice operator e.g. [a:b] + nx = estim.model.nx + @views return estim.model.h(x̂[1:nx], d) + estim.Cs*x̂[nx+1:end] end