-
Notifications
You must be signed in to change notification settings - Fork 5
/
1.5.0-DEV-7206b56e94.log
2376 lines (2363 loc) · 112 KB
/
1.5.0-DEV-7206b56e94.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Julia Version 1.5.0-DEV.485
Commit 7206b56e94 (2020-03-18 17:25 UTC)
Platform Info:
OS: Linux (x86_64-linux-gnu)
CPU: Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-9.0.1 (ORCJIT, skylake)
Environment:
JULIA_DEPOT_PATH = ::/usr/local/share/julia
JULIA_NUM_THREADS = 2
Resolving package versions...
Installed SortingAlgorithms ──────────── v0.3.1
Installed DiffResults ────────────────── v1.0.2
Installed CommonSubexpressions ───────── v0.2.0
Installed Parameters ─────────────────── v0.12.0
Installed LineSearches ───────────────── v7.0.1
Installed StaticArrays ───────────────── v0.12.1
Installed StatsBase ──────────────────── v0.32.2
Installed Optim ──────────────────────── v0.20.4
Installed CompilerSupportLibraries_jll ─ v0.3.0+0
Installed NaNMath ────────────────────── v0.3.3
Installed OpenSpecFun_jll ────────────── v0.5.3+3
Installed DataAPI ────────────────────── v1.1.0
Installed Missings ───────────────────── v0.4.3
Installed PositiveFactorizations ─────── v0.2.3
Installed SpecialFunctions ───────────── v0.10.0
Installed DataStructures ─────────────── v0.17.10
Installed Requires ───────────────────── v1.0.1
Installed FiniteDiff ─────────────────── v2.2.1
Installed ArrayInterface ─────────────── v2.5.1
Installed OrderedCollections ─────────── v1.1.0
Installed Compat ─────────────────────── v3.8.0
Installed DiffRules ──────────────────── v1.0.1
Installed ForwardDiff ────────────────── v0.10.9
Installed FillArrays ─────────────────── v0.8.5
Installed NLSolversBase ──────────────── v7.6.1
#=#=# 0.7%#### 6.2%########## 14.8%################### 26.5%############################ 39.5%################################# 46.3%################################################# 68.5%#################################################################### 94.8%######################################################################## 100.0%
#=#=# ######################################################################## 100.0%
Updating `~/.julia/environments/v1.5/Project.toml`
429524aa + Optim v0.20.4
Updating `~/.julia/environments/v1.5/Manifest.toml`
4fba245c + ArrayInterface v2.5.1
bbf7d656 + CommonSubexpressions v0.2.0
34da2185 + Compat v3.8.0
e66e0078 + CompilerSupportLibraries_jll v0.3.0+0
9a962f9c + DataAPI v1.1.0
864edb3b + DataStructures v0.17.10
163ba53b + DiffResults v1.0.2
b552c78f + DiffRules v1.0.1
1a297f60 + FillArrays v0.8.5
6a86dc24 + FiniteDiff v2.2.1
f6369f11 + ForwardDiff v0.10.9
d3d80556 + LineSearches v7.0.1
e1d29d7a + Missings v0.4.3
d41bc354 + NLSolversBase v7.6.1
77ba4419 + NaNMath v0.3.3
efe28fd5 + OpenSpecFun_jll v0.5.3+3
429524aa + Optim v0.20.4
bac558e1 + OrderedCollections v1.1.0
d96e819e + Parameters v0.12.0
85a6dd25 + PositiveFactorizations v0.2.3
ae029012 + Requires v1.0.1
a2af1166 + SortingAlgorithms v0.3.1
276daf66 + SpecialFunctions v0.10.0
90137ffa + StaticArrays v0.12.1
2913bbd2 + StatsBase v0.32.2
2a0f44e3 + Base64
ade2ca70 + Dates
8bb1440f + DelimitedFiles
8ba89e20 + Distributed
b77e0a4c + InteractiveUtils
76f85450 + LibGit2
8f399da3 + Libdl
37e2e46d + LinearAlgebra
56ddb016 + Logging
d6f4376e + Markdown
a63ad114 + Mmap
44cfe95a + Pkg
de0858da + Printf
3fa0cd96 + REPL
9a3f8284 + Random
ea8e919c + SHA
9e88b42a + Serialization
1a1011a3 + SharedArrays
6462fe0b + Sockets
2f01184e + SparseArrays
10745b16 + Statistics
8dfed614 + Test
cf7118a7 + UUIDs
4ec0a83e + Unicode
Testing Optim
Status `/tmp/jl_4V8Ia1/Project.toml`
34da2185 Compat v3.8.0
1a297f60 FillArrays v0.8.5
d3d80556 LineSearches v7.0.1
d41bc354 NLSolversBase v7.6.1
77ba4419 NaNMath v0.3.3
429524aa Optim v0.20.4
cec144fc OptimTestProblems v2.0.2
d96e819e Parameters v0.12.0
85a6dd25 PositiveFactorizations v0.2.3
731186ca RecursiveArrayTools v2.1.0
2913bbd2 StatsBase v0.32.2
37e2e46d LinearAlgebra
de0858da Printf
9a3f8284 Random
2f01184e SparseArrays
8dfed614 Test
Status `/tmp/jl_4V8Ia1/Manifest.toml`
4fba245c ArrayInterface v2.5.1
bbf7d656 CommonSubexpressions v0.2.0
34da2185 Compat v3.8.0
e66e0078 CompilerSupportLibraries_jll v0.3.0+0
9a962f9c DataAPI v1.1.0
864edb3b DataStructures v0.17.10
163ba53b DiffResults v1.0.2
b552c78f DiffRules v1.0.1
1a297f60 FillArrays v0.8.5
6a86dc24 FiniteDiff v2.2.1
f6369f11 ForwardDiff v0.10.9
d3d80556 LineSearches v7.0.1
1914dd2f MacroTools v0.5.4
e1d29d7a Missings v0.4.3
d41bc354 NLSolversBase v7.6.1
77ba4419 NaNMath v0.3.3
efe28fd5 OpenSpecFun_jll v0.5.3+3
429524aa Optim v0.20.4
cec144fc OptimTestProblems v2.0.2
bac558e1 OrderedCollections v1.1.0
d96e819e Parameters v0.12.0
85a6dd25 PositiveFactorizations v0.2.3
3cdcf5f2 RecipesBase v0.8.0
731186ca RecursiveArrayTools v2.1.0
ae029012 Requires v1.0.1
a2af1166 SortingAlgorithms v0.3.1
276daf66 SpecialFunctions v0.10.0
90137ffa StaticArrays v0.12.1
2913bbd2 StatsBase v0.32.2
700de1a5 ZygoteRules v0.2.0
2a0f44e3 Base64
ade2ca70 Dates
8bb1440f DelimitedFiles
8ba89e20 Distributed
b77e0a4c InteractiveUtils
76f85450 LibGit2
8f399da3 Libdl
37e2e46d LinearAlgebra
56ddb016 Logging
d6f4376e Markdown
a63ad114 Mmap
44cfe95a Pkg
de0858da Printf
3fa0cd96 REPL
9a3f8284 Random
ea8e919c SHA
9e88b42a Serialization
1a1011a3 SharedArrays
6462fe0b Sockets
2f01184e SparseArrays
10745b16 Statistics
8dfed614 Test
cf7118a7 UUIDs
4ec0a83e Unicode
./special/bigfloat/initial_convergence.jl
15.656401 seconds (18.43 M allocations: 964.172 MiB, 6.14% gc time)
Test Summary: |
special | No tests
./general/api.jl
17.687196 seconds (16.57 M allocations: 861.548 MiB, 5.11% gc time)
./general/callables.jl
0.227682 seconds (141.06 k allocations: 7.846 MiB)
./general/callbacks.jl
5.625216 seconds (3.58 M allocations: 196.244 MiB, 2.27% gc time)
./general/convergence.jl
0.420815 seconds (256.63 k allocations: 13.927 MiB)
./general/default_solvers.jl
0.407237 seconds (218.82 k allocations: 12.000 MiB)
./general/deprecate.jl
0.000152 seconds (85 allocations: 5.312 KiB)
./general/initial_convergence.jl
3.325650 seconds (2.72 M allocations: 142.553 MiB, 2.25% gc time)
./general/objective_types.jl
4.969947 seconds (3.94 M allocations: 213.969 MiB, 1.68% gc time)
./general/Optim.jl
0.587639 seconds (461.76 k allocations: 23.967 MiB)
./general/optimize.jl
1.656306 seconds (1.49 M allocations: 79.488 MiB, 3.42% gc time)
./general/type_stability.jl
15.489334 seconds (17.23 M allocations: 864.313 MiB, 3.30% gc time)
./general/counter.jl
13.622644 seconds (11.82 M allocations: 603.859 MiB, 5.07% gc time)
./general/maximize.jl
1.033658 seconds (1.03 M allocations: 56.754 MiB, 1.85% gc time)
Test Summary: | Pass Total
general | 2217 2217
./univariate/optimize/interface.jl
0.000121 seconds (91 allocations: 5.672 KiB)
./univariate/optimize/optimize.jl
0.026256 seconds (2.23 k allocations: 158.062 KiB)
./univariate/solvers/golden_section.jl
1.535963 seconds (1.21 M allocations: 66.815 MiB, 1.28% gc time)
./univariate/solvers/brent.jl
1.638917 seconds (1.25 M allocations: 68.490 MiB, 2.39% gc time)
./univariate/dual.jl
1.714204 seconds (1.01 M allocations: 54.842 MiB, 1.20% gc time)
Test Summary: | Pass Total
univariate | 48 48
./multivariate/optimize/interface.jl
3.413239 seconds (3.46 M allocations: 183.234 MiB, 2.48% gc time)
./multivariate/optimize/optimize.jl
1.313149 seconds (729.65 k allocations: 39.217 MiB, 1.94% gc time)
./multivariate/optimize/inplace.jl
0.537890 seconds (420.23 k allocations: 20.747 MiB, 4.43% gc time)
./multivariate/solvers/constrained/fminbox.jl
17.272633 seconds (15.09 M allocations: 778.826 MiB, 2.53% gc time)
./multivariate/solvers/constrained/ipnewton/constraints.jl
Iter Lagrangian value Function value Gradient norm |==constr.| μ
0 1.325355e+05 -1.131426e-16 8.836323e+04 1.325355e+05 2.72e-04
* c: [6.0]
* time: 1.584594303014168e9
* g(x): [88357.23479296362, -66267.7444111528]
* x: [12.0, 14.0]
* gtilde(x): [88357.23474122555, -66267.74465259715]
* h(x): [3.572390764231408e-5 0.019671531709867046; 0.019671531709867046 0.0002749782775992128]
* α: 1.0
* bstate: BarrierStateVars{Float64}:
slack_x: [7.0, 3.0, 9.0, 1.0]
slack_c: Float64[]
λx: [3.880355485284997e-5, 9.054162798998327e-5, 3.0180542663327756e-5, 0.0002716248839699498]
λc: Float64[]
λxE: Float64[]
λcE: [-22089.248217532382]
* bgrad: BarrierStateVars{Float64}:
slack_x: [0.0, 0.0, 0.0, 0.0]
slack_c: Float64[]
λx: [0.0, 0.0, 0.0, 0.0]
λc: Float64[]
λxE: Float64[]
λcE: [-6.0]
|gx| = 110446.43458463406, |Hstepx + gx| = 0.0
|gE| = 6.0, |HstepλE + gE| = 8.109972711167757e-7
L0 = 132535.48788140537, L1 = -265071.0247190437, L2 = 265071.0178139728
α = 0.5345893140103826, value: (132535.48788140537, 28708.110114045554, -9168.649387177371), slope: (-265071.0247190437, -123366.383146156, -123366.89114183807)
1 2.870811e+04 -1.351385e-02 4.112536e+04 2.870812e+04 2.72e-05
* c: [2.7924636227667747]
* time: 1.584594304645882e9
* g(x): [41122.544605945994, -30841.71587832922]
* x: [11.947365905691694, 14.999]
* gtilde(x): [41122.54455608822, -30841.71639447686]
* h(x): [0.0009609916332141011 0.010037405947838385; 0.010037405947838385 0.5435018276492267]
* α: 0.5345893140103826
* bstate: BarrierStateVars{Float64}:
slack_x: [6.947365905691693, 3.0526340943083072, 9.999, 0.0010000000000000009]
slack_c: Float64[]
λx: [3.90953248479389e-5, 8.895310246116579e-5, 2.6830502427698376e-5, 0.0005429781430559297]
λc: Float64[]
λxE: Float64[]
λcE: [-10280.571955377884]
* bgrad: BarrierStateVars{Float64}:
slack_x: [3.51855713146261e-5, 8.005505324929334e-5, 2.4113981935949704e-5, -0.026619510253939025]
slack_c: Float64[]
λx: [-8.881784197001252e-16, 8.881784197001252e-16, 0.0, 5.551115123125783e-16]
λc: Float64[]
λxE: Float64[]
λcE: [-2.7924636227667747]
|gx| = 51403.06548178624, |Hstepx + gx| = 0.0
|gE| = 2.7924636227667747, |HstepλE + gE| = 8.7371629930999e-8
L0 = 28708.109734908154, L1 = -57416.68375631297, L2 = 57416.682958997044
α = 0.0030311605546157762, value: (28708.109734908154, 28534.334328337143, 28534.07054792917), slope: (-57416.68375631297, -57242.63931238369, -57242.644571750774)
2 2.853433e+04 -1.427745e-02 4.100079e+04 2.853435e+04 2.30e-04
* c: [2.7839992174183195]
* time: 1.584594304648364e9
* g(x): [40997.895570746674, -30748.2296857558]
* x: [11.944389102341507, 14.997852397315903]
* gtilde(x): [40997.895521128405, -30748.22965953829]
* h(x): [0.001013181445890892 0.0100486536080639; 0.0100486536080639 0.0008059470872271231]
* α: 0.0030311605546157762
* bstate: BarrierStateVars{Float64}:
slack_x: [6.944389102341507, 3.055610897658493, 9.997852397315903, 0.002147602684098501]
slack_c: Float64[]
λx: [3.90054232743987e-5, 8.862369933070934e-5, 2.676048846043794e-5, 5.429781430559954e-7]
λc: Float64[]
λxE: Float64[]
λcE: [-10249.409700228052]
* bgrad: BarrierStateVars{Float64}:
slack_x: [5.832185007087999e-6, 1.3231942320868535e-5, 3.7187525797665147e-6, -0.1072669120397725]
slack_c: Float64[]
λx: [0.0, 0.0, 0.0, 1.3071141391485241e-15]
λc: Float64[]
λxE: Float64[]
λcE: [-2.7839992174183195]
41.187871 seconds (28.37 M allocations: 1.404 GiB, 2.73% gc time)
./multivariate/solvers/constrained/ipnewton/counter.jl
0.728039 seconds (374.15 k allocations: 20.869 MiB)
./multivariate/solvers/constrained/ipnewton/ipnewton_unconstrained.jl
9.341322 seconds (7.37 M allocations: 526.731 MiB, 5.54% gc time)
./multivariate/solvers/constrained/samin.jl
================================================================================
SAMIN results
==> Normal convergence <==
total number of objective function evaluations: 22851
Obj. value: 0.0000000000
parameter search width
3.00000 0.00000
2.00000 0.00000
================================================================================
2.646384 seconds (2.56 M allocations: 132.131 MiB, 2.38% gc time)
./multivariate/solvers/first_order/accelerated_gradient_descent.jl
5.819521 seconds (5.88 M allocations: 1.252 GiB, 9.77% gc time)
./multivariate/solvers/first_order/bfgs.jl
89.701037 seconds (15.17 M allocations: 1.695 GiB, 4.22% gc time)
./multivariate/solvers/first_order/cg.jl
38.089452 seconds (6.84 M allocations: 1.036 GiB, 2.38% gc time)
./multivariate/solvers/first_order/gradient_descent.jl
271.198851 seconds (69.69 M allocations: 12.915 GiB, 2.43% gc time)
./multivariate/solvers/first_order/l_bfgs.jl
14.692415 seconds (5.67 M allocations: 1.157 GiB, 5.83% gc time)
./multivariate/solvers/first_order/momentum_gradient_descent.jl
Momentum Gradient Descent: Test Failed at /home/pkgeval/.julia/packages/Optim/U5QAY/test/runtests.jl:149
Expression: Optim.converged(results)
Stacktrace:
[1] run_optim_tests(::MomentumGradientDescent{Float64,LineSearches.InitialPrevious{Float64},LineSearches.HagerZhang{Float64,Base.RefValue{Bool}}}; convergence_exceptions::NTuple{5,Tuple{String,Int64}}, minimizer_exceptions::Tuple{}, minimum_exceptions::Tuple{Tuple{String,Int64},Tuple{String,Int64}}, f_increase_exceptions::NTuple{4,String}, iteration_exceptions::Tuple{Tuple{String,Int64},Tuple{String,Int64},Tuple{String,Int64}}, skip::NTuple{6,String}, show_name::Bool, show_trace::Bool, show_res::Bool, show_itcalls::Bool) at /home/pkgeval/.julia/packages/Optim/U5QAY/test/runtests.jl:149
[2] top-level scope at /home/pkgeval/.julia/packages/Optim/U5QAY/test/multivariate/solvers/first_order/momentum_gradient_descent.jl:5
[3] top-level scope at /workspace/srcdir/usr/share/julia/stdlib/v1.5/Test/src/Test.jl:1114
[4] top-level scope at /home/pkgeval/.julia/packages/Optim/U5QAY/test/multivariate/solvers/first_order/momentum_gradient_descent.jl:3
Paraboloid Random Matrix did not converge with i = 1
* Status: failure (reached maximum number of iterations) (line search failed)
* Candidate solution
Minimizer: [8.88e-01, 1.12e+00, 1.15e+00, ...]
Minimum: 1.912726e-01
* Found with
Algorithm: Momentum Gradient Descent
Initial Point: [0.00e+00, 0.00e+00, 0.00e+00, ...]
* Convergence measures
|x - x'| = 3.01e-05 ≰ 0.0e+00
|x - x'|/|x'| = 2.54e-05 ≰ 0.0e+00
|f(x) - f(x')| = 1.19e-05 ≰ 0.0e+00
|f(x) - f(x')|/|f(x')| = 6.20e-05 ≰ 0.0e+00
|g(x)| = 2.40e-02 ≰ 1.0e-08
* Work counters
Seconds run: 714 (vs limit Inf)
Iterations: 10000
f(x) calls: 39493
∇f(x) calls: 39493
Momentum Gradient Descent: Test Failed at /home/pkgeval/.julia/packages/Optim/U5QAY/test/runtests.jl:157
Expression: Optim.minimum(results) < prob.minimum + sqrt(eps(typeof(prob.minimum)))
Evaluated: 0.1912725814045097 < 1.4901161193847656e-8
Stacktrace:
[1] run_optim_tests(::MomentumGradientDescent{Float64,LineSearches.InitialPrevious{Float64},LineSearches.HagerZhang{Float64,Base.RefValue{Bool}}}; convergence_exceptions::NTuple{5,Tuple{String,Int64}}, minimizer_exceptions::Tuple{}, minimum_exceptions::Tuple{Tuple{String,Int64},Tuple{String,Int64}}, f_increase_exceptions::NTuple{4,String}, iteration_exceptions::Tuple{Tuple{String,Int64},Tuple{String,Int64},Tuple{String,Int64}}, skip::NTuple{6,String}, show_name::Bool, show_trace::Bool, show_res::Bool, show_itcalls::Bool) at /home/pkgeval/.julia/packages/Optim/U5QAY/test/runtests.jl:157
[2] top-level scope at /home/pkgeval/.julia/packages/Optim/U5QAY/test/multivariate/solvers/first_order/momentum_gradient_descent.jl:5
[3] top-level scope at /workspace/srcdir/usr/share/julia/stdlib/v1.5/Test/src/Test.jl:1114
[4] top-level scope at /home/pkgeval/.julia/packages/Optim/U5QAY/test/multivariate/solvers/first_order/momentum_gradient_descent.jl:3
Momentum Gradient Descent: Test Failed at /home/pkgeval/.julia/packages/Optim/U5QAY/test/runtests.jl:160
Expression: norm(Optim.minimizer(results) - prob.solutions) < 0.01
Evaluated: 1.281446679711507 < 0.01
Stacktrace:
[1] run_optim_tests(::MomentumGradientDescent{Float64,LineSearches.InitialPrevious{Float64},LineSearches.HagerZhang{Float64,Base.RefValue{Bool}}}; convergence_exceptions::NTuple{5,Tuple{String,Int64}}, minimizer_exceptions::Tuple{}, minimum_exceptions::Tuple{Tuple{String,Int64},Tuple{String,Int64}}, f_increase_exceptions::NTuple{4,String}, iteration_exceptions::Tuple{Tuple{String,Int64},Tuple{String,Int64},Tuple{String,Int64}}, skip::NTuple{6,String}, show_name::Bool, show_trace::Bool, show_res::Bool, show_itcalls::Bool) at /home/pkgeval/.julia/packages/Optim/U5QAY/test/runtests.jl:160
[2] top-level scope at /home/pkgeval/.julia/packages/Optim/U5QAY/test/multivariate/solvers/first_order/momentum_gradient_descent.jl:5
[3] top-level scope at /workspace/srcdir/usr/share/julia/stdlib/v1.5/Test/src/Test.jl:1114
[4] top-level scope at /home/pkgeval/.julia/packages/Optim/U5QAY/test/multivariate/solvers/first_order/momentum_gradient_descent.jl:3
722.674152 seconds (55.03 M allocations: 16.157 GiB, 7.37% gc time)
./multivariate/solvers/first_order/ngmres.jl
┌ Warning: Use caution. N-GMRES/O-ACCEL has only been tested with Gradient Descent and L-BFGS preconditioning.
└ @ Optim ~/.julia/packages/Optim/U5QAY/src/multivariate/solvers/first_order/ngmres.jl:210
28.903876 seconds (26.51 M allocations: 2.774 GiB, 7.66% gc time)
./multivariate/solvers/second_order/newton.jl
93.381798 seconds (48.93 M allocations: 10.555 GiB, 3.03% gc time)
./multivariate/solvers/second_order/newton_trust_region.jl
117.807043 seconds (39.78 M allocations: 8.223 GiB, 5.78% gc time)
./multivariate/solvers/second_order/krylov_trust_region.jl
0.412036 seconds (160.27 k allocations: 46.137 MiB, 6.86% gc time)
./multivariate/solvers/zeroth_order/grid_search.jl
0.330393 seconds (284.29 k allocations: 15.064 MiB, 3.03% gc time)
./multivariate/solvers/zeroth_order/nelder_mead.jl
1.490047 seconds (3.97 M allocations: 210.719 MiB, 5.39% gc time)
./multivariate/solvers/zeroth_order/particle_swarm.jl
Iter Function value Gradient norm
0 1.000000e+00 NaN
* time: 4.482269287109375e-5
* x: [0.0, 0.0]
1 1.000000e+00 NaN
* time: 0.06268787384033203
* x: [0.0, 0.0]
2 1.000000e+00 NaN
* time: 0.06292581558227539
* x: [0.0, 0.0]
3 1.000000e+00 NaN
* time: 0.06315088272094727
* x: [0.0, 0.0]
4 1.000000e+00 NaN
* time: 0.06343388557434082
* x: [0.0, 0.0]
5 1.000000e+00 NaN
* time: 0.06368589401245117
* x: [0.0, 0.0]
6 1.000000e+00 NaN
* time: 0.06391692161560059
* x: [0.0, 0.0]
7 1.000000e+00 NaN
* time: 0.06418299674987793
* x: [0.0, 0.0]
8 1.000000e+00 NaN
* time: 0.06444191932678223
* x: [0.0, 0.0]
9 1.000000e+00 NaN
* time: 0.06467795372009277
* x: [0.0, 0.0]
10 1.000000e+00 NaN
* time: 0.06495285034179688
* x: [0.0, 0.0]
11 1.000000e+00 NaN
* time: 0.06517791748046875
* x: [0.0, 0.0]
12 1.000000e+00 NaN
* time: 0.06543684005737305
* x: [0.0, 0.0]
13 1.000000e+00 NaN
* time: 0.06566786766052246
* x: [0.0, 0.0]
14 8.341073e-01 NaN
* time: 0.06592702865600586
* x: [0.11538370266107331, 0.036020514502325254]
15 8.341073e-01 NaN
* time: 0.06615495681762695
* x: [0.11538370266107331, 0.036020514502325254]
16 8.339676e-01 NaN
* time: 0.06638884544372559
* x: [0.15702996056622703, -0.010465533327950471]
17 8.339676e-01 NaN
* time: 0.06666803359985352
* x: [0.15702996056622703, -0.010465533327950471]
18 6.750704e-01 NaN
* time: 0.06691503524780273
* x: [0.19275490716057905, 0.021848969000848928]
19 6.750704e-01 NaN
* time: 0.06716585159301758
* x: [0.19275490716057905, 0.021848969000848928]
20 6.750704e-01 NaN
* time: 0.06747198104858398
* x: [0.19275490716057905, 0.021848969000848928]
21 6.750704e-01 NaN
* time: 0.06773591041564941
* x: [0.19275490716057905, 0.021848969000848928]
22 6.632424e-01 NaN
* time: 0.06800293922424316
* x: [0.1969829270535347, 0.05236915578551115]
23 6.632424e-01 NaN
* time: 0.06823086738586426
* x: [0.1969829270535347, 0.05236915578551115]
24 6.632424e-01 NaN
* time: 0.06847000122070312
* x: [0.1969829270535347, 0.05236915578551115]
25 5.842753e-01 NaN
* time: 0.0687110424041748
* x: [0.2606536184152626, 0.048538709120751825]
26 5.477922e-01 NaN
* time: 0.06895589828491211
* x: [0.27367697869640767, 0.060669852398669157]
27 4.882742e-01 NaN
* time: 0.06916594505310059
* x: [0.3098877015239294, 0.08506716911206239]
28 4.671278e-01 NaN
* time: 0.06938982009887695
* x: [0.3244738625039677, 0.09489473291844022]
29 4.581716e-01 NaN
* time: 0.06962084770202637
* x: [0.3309523530666372, 0.09925967715981959]
30 4.546615e-01 NaN
* time: 0.06990599632263184
* x: [0.33354374929170494, 0.10100565485637135]
31 4.531926e-01 NaN
* time: 0.07014584541320801
* x: [0.3346373428639098, 0.10174247386061762]
32 4.525262e-01 NaN
* time: 0.07040286064147949
* x: [0.3351352392082991, 0.10207793622800439]
33 4.397339e-01 NaN
* time: 0.07067584991455078
* x: [0.3833095760423565, 0.12254860737225162]
34 4.397339e-01 NaN
* time: 0.07092690467834473
* x: [0.3833095760423565, 0.12254860737225162]
35 4.316764e-01 NaN
* time: 0.07117891311645508
* x: [0.3448365595197876, 0.11397538756020159]
36 4.316764e-01 NaN
* time: 0.07143902778625488
* x: [0.3448365595197876, 0.11397538756020159]
37 4.316764e-01 NaN
* time: 0.07170891761779785
* x: [0.3448365595197876, 0.11397538756020159]
38 4.316764e-01 NaN
* time: 0.07196593284606934
* x: [0.3448365595197876, 0.11397538756020159]
39 4.316764e-01 NaN
* time: 0.07217788696289062
* x: [0.3448365595197876, 0.11397538756020159]
40 4.253519e-01 NaN
* time: 0.0724480152130127
* x: [0.34879840467635886, 0.11807097118760101]
41 4.173131e-01 NaN
* time: 0.07269501686096191
* x: [0.3699652778075746, 0.12260217374978627]
42 4.143288e-01 NaN
* time: 0.07294797897338867
* x: [0.35631643026740556, 0.1269063844610519]
43 4.061662e-01 NaN
* time: 0.07316803932189941
* x: [0.3710108757655203, 0.12738315702748543]
44 4.006484e-01 NaN
* time: 0.07338094711303711
* x: [0.36823326016268504, 0.13169811444382834]
45 3.985645e-01 NaN
* time: 0.07360291481018066
* x: [0.38081991135783383, 0.13270289996869208]
46 3.912090e-01 NaN
* time: 0.0738680362701416
* x: [0.3838469307497379, 0.13658469444497887]
47 3.798507e-01 NaN
* time: 0.0741269588470459
* x: [0.3858834718308719, 0.14369874557257187]
48 3.720291e-01 NaN
* time: 0.07436299324035645
* x: [0.3950029599991429, 0.14827641536749836]
49 3.670915e-01 NaN
* time: 0.0745689868927002
* x: [0.39566971534095113, 0.15222274698710114]
50 3.591566e-01 NaN
* time: 0.07477688789367676
* x: [0.401356820293726, 0.15828914027070431]
51 3.536428e-01 NaN
* time: 0.07498598098754883
* x: [0.4072426441735278, 0.1610699997888668]
52 3.486781e-01 NaN
* time: 0.07522892951965332
* x: [0.4119169251049704, 0.16434975955386452]
53 3.472088e-01 NaN
* time: 0.07544994354248047
* x: [0.4157556361516107, 0.16519290145866455]
54 3.469432e-01 NaN
* time: 0.07565498352050781
* x: [0.4173420682785835, 0.16554134847359225]
55 3.463536e-01 NaN
* time: 0.07585787773132324
* x: [0.4193748964210468, 0.1662690267173944]
56 3.451379e-01 NaN
* time: 0.0760648250579834
* x: [0.4198235131668805, 0.16701429935460418]
57 3.434897e-01 NaN
* time: 0.07630586624145508
* x: [0.4174820876049065, 0.16783944859505634]
58 3.064518e-01 NaN
* time: 0.07651996612548828
* x: [0.446542522006564, 0.2005690554666757]
59 2.869194e-01 NaN
* time: 0.07674789428710938
* x: [0.4944336399941984, 0.26216264919851084]
60 2.283560e-01 NaN
* time: 0.07697200775146484
* x: [0.545295751413726, 0.3120444134528328]
61 1.700515e-01 NaN
* time: 0.07718682289123535
* x: [0.6036703936015688, 0.3758084441287487]
62 1.273151e-01 NaN
* time: 0.07740592956542969
* x: [0.646265999179896, 0.4223366522506192]
63 8.747869e-02 NaN
* time: 0.07761192321777344
* x: [0.7227106043048919, 0.5120201954187495]
64 7.940488e-02 NaN
* time: 0.07784795761108398
* x: [0.7240058030539449, 0.529869548273619]
65 7.315137e-02 NaN
* time: 0.07806801795959473
* x: [0.7418467437421771, 0.5584039711466857]
66 6.795735e-02 NaN
* time: 0.07830595970153809
* x: [0.7578992669260564, 0.5840780369211797]
67 6.431109e-02 NaN
* time: 0.07853198051452637
* x: [0.7690442253443062, 0.6019030474946886]
68 6.280893e-02 NaN
* time: 0.07876086235046387
* x: [0.7735022087116061, 0.6090330517240922]
69 6.219869e-02 NaN
* time: 0.07897496223449707
* x: [0.7752854020585261, 0.6118850534158536]
70 6.178139e-02 NaN
* time: 0.0791928768157959
* x: [0.7764951099631213, 0.6138198346309146]
71 6.159080e-02 NaN
* time: 0.0794219970703125
* x: [0.7770449290310241, 0.614699203609343]
72 6.151440e-02 NaN
* time: 0.07964301109313965
* x: [0.7772648566581851, 0.6150509512007144]
73 6.147352e-02 NaN
* time: 0.07985782623291016
* x: [0.7773824132981544, 0.6152389688021984]
74 6.145260e-02 NaN
* time: 0.0800628662109375
* x: [0.7774425304255534, 0.6153351188631786]
75 6.144301e-02 NaN
* time: 0.08027195930480957
* x: [0.7774701040607535, 0.6153792195516284]
76 6.143891e-02 NaN
* time: 0.08049297332763672
* x: [0.7774818751283618, 0.6153980459479867]
77 6.143707e-02 NaN
* time: 0.08070492744445801
* x: [0.7774871711939618, 0.6154065163631984]
78 3.920913e-02 NaN
* time: 0.08092594146728516
* x: [0.8370899141634998, 0.6894636675711636]
79 3.920913e-02 NaN
* time: 0.08113884925842285
* x: [0.8370899141634998, 0.6894636675711636]
80 3.920913e-02 NaN
* time: 0.08137202262878418
* x: [0.8370899141634998, 0.6894636675711636]
81 3.920913e-02 NaN
* time: 0.08160591125488281
* x: [0.8370899141634998, 0.6894636675711636]
82 3.920913e-02 NaN
* time: 0.08188080787658691
* x: [0.8370899141634998, 0.6894636675711636]
83 1.905880e-02 NaN
* time: 0.08213400840759277
* x: [0.8654849053658829, 0.7521697483517842]
84 1.905880e-02 NaN
* time: 0.082366943359375
* x: [0.8654849053658829, 0.7521697483517842]
85 1.905880e-02 NaN
* time: 0.08262181282043457
* x: [0.8654849053658829, 0.7521697483517842]
86 1.905880e-02 NaN
* time: 0.08286595344543457
* x: [0.8654849053658829, 0.7521697483517842]
87 1.905880e-02 NaN
* time: 0.08313894271850586
* x: [0.8654849053658829, 0.7521697483517842]
88 1.905880e-02 NaN
* time: 0.08338189125061035
* x: [0.8654849053658829, 0.7521697483517842]
89 1.905880e-02 NaN
* time: 0.08361482620239258
* x: [0.8654849053658829, 0.7521697483517842]
90 1.905880e-02 NaN
* time: 0.0838630199432373
* x: [0.8654849053658829, 0.7521697483517842]
91 1.854623e-02 NaN
* time: 0.08408284187316895
* x: [0.870381398609355, 0.7533861666955676]
92 1.854623e-02 NaN
* time: 0.08429098129272461
* x: [0.870381398609355, 0.7533861666955676]
93 1.854623e-02 NaN
* time: 0.08451294898986816
* x: [0.870381398609355, 0.7533861666955676]
94 1.772674e-02 NaN
* time: 0.08471798896789551
* x: [0.8690193099152319, 0.7575837046836392]
95 1.649264e-02 NaN
* time: 0.08493590354919434
* x: [0.8716023672434794, 0.7594320772001775]
96 1.640724e-02 NaN
* time: 0.08514094352722168
* x: [0.872883638164526, 0.7603489232689052]
97 1.640724e-02 NaN
* time: 0.08536791801452637
* x: [0.872883638164526, 0.7603489232689052]
98 1.636297e-02 NaN
* time: 0.08560681343078613
* x: [0.8726710333481064, 0.7603287519905614]
99 1.636297e-02 NaN
* time: 0.08585190773010254
* x: [0.8726710333481064, 0.7603287519905614]
100 1.635777e-02 NaN
* time: 0.0860598087310791
* x: [0.8728209885932219, 0.7604627084367774]
101 1.635777e-02 NaN
* time: 0.08627080917358398
* x: [0.8728209885932219, 0.7604627084367774]
102 1.631812e-02 NaN
* time: 0.08651590347290039
* x: [0.8725839902949836, 0.7604902288388976]
103 1.631812e-02 NaN
* time: 0.08671903610229492
* x: [0.8725839902949836, 0.7604902288388976]
104 1.631492e-02 NaN
* time: 0.0869438648223877
* x: [0.8727225898500088, 0.7605705459265378]
105 1.631492e-02 NaN
* time: 0.08716082572937012
* x: [0.8727225898500088, 0.7605705459265378]
106 1.630391e-02 NaN
* time: 0.08736801147460938
* x: [0.8726106881624734, 0.7605783669765834]
107 1.630391e-02 NaN
* time: 0.08757400512695312
* x: [0.8726106881624734, 0.7605783669765834]
108 1.630391e-02 NaN
* time: 0.08777999877929688
* x: [0.8726106881624734, 0.7605783669765834]
109 1.630391e-02 NaN
* time: 0.08798885345458984
* x: [0.8726106881624734, 0.7605783669765834]
110 1.630058e-02 NaN
* time: 0.08819103240966797
* x: [0.8725500395367918, 0.7605879951746879]
111 1.630058e-02 NaN
* time: 0.08839297294616699
* x: [0.8725500395367918, 0.7605879951746879]
112 1.615334e-02 NaN
* time: 0.08859586715698242
* x: [0.8731530361980018, 0.7616013411170838]
113 1.615334e-02 NaN
* time: 0.08879995346069336
* x: [0.8731530361980018, 0.7616013411170838]
114 1.615334e-02 NaN
* time: 0.0890049934387207
* x: [0.8731530361980018, 0.7616013411170838]
115 1.615334e-02 NaN
* time: 0.08921194076538086
* x: [0.8731530361980018, 0.7616013411170838]
116 1.604092e-02 NaN
* time: 0.08941888809204102
* x: [0.8734593782687279, 0.7623984735233766]
117 1.594147e-02 NaN
* time: 0.08964800834655762
* x: [0.8738692567120643, 0.7630773546618207]
118 1.589492e-02 NaN
* time: 0.08985400199890137
* x: [0.8742369457207895, 0.7634038228870617]
119 1.449695e-02 NaN
* time: 0.09007787704467773
* x: [0.8796937139658162, 0.7733778732073108]
120 1.409448e-02 NaN
* time: 0.09035396575927734
* x: [0.8816110387602346, 0.7781242409607744]
121 1.355002e-02 NaN
* time: 0.0905768871307373
* x: [0.8844275838899285, 0.7836015359584262]
122 1.306892e-02 NaN
* time: 0.09078192710876465
* x: [0.885859086878481, 0.7853848372241161]
123 1.290912e-02 NaN
* time: 0.09098482131958008
* x: [0.886431688073902, 0.786098157730392]
124 1.282152e-02 NaN
* time: 0.09120893478393555
* x: [0.8867696982402556, 0.7862957798543686]
125 1.279480e-02 NaN
* time: 0.09147191047668457
* x: [0.8869174801473593, 0.7863553832937505]
126 1.278246e-02 NaN
* time: 0.09172582626342773
* x: [0.8870161343059835, 0.7863840173712312]
127 1.277947e-02 NaN
* time: 0.09202384948730469
* x: [0.887108789736969, 0.7863700028502613]
128 1.277614e-02 NaN
* time: 0.09226393699645996
* x: [0.8870997937059836, 0.7864012593539261]
129 1.277509e-02 NaN
* time: 0.09247303009033203
* x: [0.8871358034607011, 0.7864035962173753]
130 1.277485e-02 NaN
* time: 0.09267902374267578
* x: [0.8871921972441479, 0.7864082097248476]
131 1.267698e-02 NaN
* time: 0.09292483329772949
* x: [0.8875112294259805, 0.7881584575962157]
132 1.259936e-02 NaN
* time: 0.09315085411071777
* x: [0.8877542270498692, 0.7880580973078818]
133 1.258380e-02 NaN
* time: 0.09338688850402832
* x: [0.8878548994879684, 0.7880165186506373]
134 1.258030e-02 NaN
* time: 0.09367799758911133
* x: [0.8878952688887822, 0.7879998457110393]
135 1.257933e-02 NaN
* time: 0.09391188621520996
* x: [0.8879114330323683, 0.7879931697687605]
136 1.257902e-02 NaN
* time: 0.09418082237243652
* x: [0.8879179055030447, 0.7879904965779164]
137 1.255808e-02 NaN
* time: 0.0943918228149414
* x: [0.8879645146725965, 0.7882334636390258]
138 1.254506e-02 NaN
* time: 0.09463286399841309
* x: [0.888074314161862, 0.7882553089394371]
139 1.254153e-02 NaN
* time: 0.09490299224853516
* x: [0.8881182339575682, 0.7882640470596016]
140 1.254040e-02 NaN
* time: 0.09516787528991699
* x: [0.8881358090615014, 0.7882675437372979]
141 1.253998e-02 NaN
* time: 0.09542298316955566
* x: [0.8881428403601007, 0.7882689426584697]
142 9.504049e-03 NaN
* time: 0.09564781188964844
* x: [0.9054974118185417, 0.8175311745320748]
143 9.504049e-03 NaN
* time: 0.09585690498352051
* x: [0.9054974118185417, 0.8175311745320748]
144 9.504049e-03 NaN
* time: 0.09605884552001953
* x: [0.9054974118185417, 0.8175311745320748]
145 9.504049e-03 NaN
* time: 0.09626603126525879
* x: [0.9054974118185417, 0.8175311745320748]
146 9.504049e-03 NaN
* time: 0.09650492668151855
* x: [0.9054974118185417, 0.8175311745320748]
147 9.504049e-03 NaN
* time: 0.09672689437866211
* x: [0.9054974118185417, 0.8175311745320748]
148 9.504049e-03 NaN
* time: 0.09694290161132812
* x: [0.9054974118185417, 0.8175311745320748]
149 9.372569e-03 NaN
* time: 0.09714794158935547
* x: [0.9056971172176871, 0.8224770974953902]
150 8.984610e-03 NaN
* time: 0.09735989570617676
* x: [0.9067800058779142, 0.8205334643586775]
151 8.984610e-03 NaN
* time: 0.09759783744812012
* x: [0.9067800058779142, 0.8205334643586775]
152 8.718654e-03 NaN
* time: 0.09786581993103027
* x: [0.906806333659192, 0.8217181196099561]
153 8.718654e-03 NaN
* time: 0.09812402725219727
* x: [0.906806333659192, 0.8217181196099561]
154 8.716193e-03 NaN
* time: 0.09840703010559082
* x: [0.9068017536243376, 0.8217391485520783]
155 8.716193e-03 NaN
* time: 0.09865784645080566
* x: [0.9068017536243376, 0.8217391485520783]
156 8.716193e-03 NaN
* time: 0.09888792037963867
* x: [0.9068017536243376, 0.8217391485520783]
157 8.701106e-03 NaN
* time: 0.09914684295654297
* x: [0.9067586836616512, 0.8219436776430278]
158 8.697052e-03 NaN
* time: 0.09937286376953125
* x: [0.9067450856179947, 0.8221109282982515]
159 8.697052e-03 NaN
* time: 0.09963488578796387
* x: [0.9067450856179947, 0.8221109282982515]
160 8.696681e-03 NaN
* time: 0.09989690780639648
* x: [0.9067444032717479, 0.8221581020616834]
161 8.696386e-03 NaN
* time: 0.10012698173522949
* x: [0.9067464770945943, 0.822148321456146]
162 8.251902e-03 NaN
* time: 0.10038304328918457
* x: [0.9096968155005712, 0.8285343816568655]
163 7.973651e-03 NaN
* time: 0.10063791275024414
* x: [0.9107524075112493, 0.8297618160477247]
164 7.889298e-03 NaN
* time: 0.10091781616210938
* x: [0.9111783464862397, 0.830257094660126]
165 7.860026e-03 NaN
* time: 0.10119199752807617
* x: [0.9113490212645814, 0.8304555539990274]
166 7.377794e-03 NaN
* time: 0.1014409065246582
* x: [0.9155327768758823, 0.8397593760933334]
167 7.377794e-03 NaN
* time: 0.10170698165893555
* x: [0.9155327768758823, 0.8397593760933334]
168 7.377794e-03 NaN
* time: 0.10195088386535645
* x: [0.9155327768758823, 0.8397593760933334]
169 7.364675e-03 NaN
* time: 0.10220503807067871
* x: [0.9148588591797617, 0.8380421903624125]
170 7.364675e-03 NaN
* time: 0.10246491432189941
* x: [0.9148588591797617, 0.8380421903624125]
171 7.364675e-03 NaN
* time: 0.10270380973815918
* x: [0.9148588591797617, 0.8380421903624125]
172 7.364675e-03 NaN
* time: 0.10294604301452637
* x: [0.9148588591797617, 0.8380421903624125]
173 7.256027e-03 NaN
* time: 0.10320687294006348
* x: [0.9148186563554388, 0.8368525016606657]
174 7.116335e-03 NaN
* time: 0.10347700119018555
* x: [0.915736014078247, 0.838173497376183]
175 6.914757e-03 NaN
* time: 0.10377788543701172
* x: [0.9168477630722868, 0.8405417917777178]
176 6.829347e-03 NaN
* time: 0.10403990745544434
* x: [0.9173645007797676, 0.8416425681456297]
177 6.794916e-03 NaN
* time: 0.10429787635803223
* x: [0.9175822295129967, 0.8421063830379518]
178 6.781287e-03 NaN
* time: 0.10455489158630371
* x: [0.9176700573885798, 0.8422934776673665]
179 6.775875e-03 NaN
* time: 0.10483503341674805
* x: [0.9177052046708777, 0.8423683498843342]
180 6.773693e-03 NaN
* time: 0.10512304306030273
* x: [0.9177194139261444, 0.8423986190367045]
181 6.772812e-03 NaN
* time: 0.10540199279785156
* x: [0.9177251616373198, 0.842410863052459]
182 6.772460e-03 NaN
* time: 0.10566997528076172
* x: [0.9177274607217899, 0.8424157606587609]
183 6.772318e-03 NaN
* time: 0.10592293739318848
* x: [0.9177283873411456, 0.8424177345822313]
184 6.772260e-03 NaN
* time: 0.10617303848266602
* x: [0.9177287636119967, 0.8424185361302022]
185 6.772237e-03 NaN
* time: 0.1064448356628418
* x: [0.9177289145605687, 0.8424188576871902]
186 6.718099e-03 NaN
* time: 0.1067190170288086
* x: [0.9182912186543849, 0.8426124350085722]
187 6.686080e-03 NaN
* time: 0.1069638729095459
* x: [0.9183433313897755, 0.8429270539750773]
188 6.666363e-03 NaN
* time: 0.10719895362854004
* x: [0.9183959270721102, 0.8431838947668794]
189 6.660858e-03 NaN
* time: 0.10746502876281738
* x: [0.9183864114984451, 0.843461967179655]
190 6.638247e-03 NaN
* time: 0.10773801803588867
* x: [0.9185970007377926, 0.8434769636817767]
191 6.627483e-03 NaN
* time: 0.10794901847839355
* x: [0.9187418154127273, 0.8435906347600703]
192 6.599295e-03 NaN
* time: 0.10819888114929199
* x: [0.9188480526918783, 0.843912193024431]
193 6.585954e-03 NaN
* time: 0.10845494270324707
* x: [0.9188469419768075, 0.8442428797992373]
194 6.584624e-03 NaN
* time: 0.10871696472167969
* x: [0.9189300329165877, 0.8440819171741542]
195 6.577068e-03 NaN
* time: 0.10899996757507324
* x: [0.9190262315967708, 0.8441584683022125]
196 6.550947e-03 NaN
* time: 0.10927391052246094
* x: [0.9191053074957057, 0.8444900804949358]
197 6.542762e-03 NaN
* time: 0.10950899124145508
* x: [0.9191357546417017, 0.8446172562517987]
198 6.531623e-03 NaN
* time: 0.10974383354187012
* x: [0.9192039882943516, 0.8447455023688613]
199 6.510884e-03 NaN
* time: 0.10999298095703125
* x: [0.9193436277482144, 0.8449596062690349]
200 6.492423e-03 NaN
* time: 0.1102609634399414
* x: [0.9194696805902351, 0.8451544759506583]
201 6.480920e-03 NaN
* time: 0.11052584648132324
* x: [0.9195073377507921, 0.8453576637009661]
202 6.470704e-03 NaN
* time: 0.11073589324951172
* x: [0.919562459776108, 0.8455239437130008]
203 6.466135e-03 NaN
* time: 0.11097598075866699
* x: [0.919592834103043, 0.8455602682109751]
204 6.460117e-03 NaN