-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFeedForwardNetwork.cs
267 lines (219 loc) · 8.26 KB
/
FeedForwardNetwork.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace NeuralNet
{
public class FeedForwardNetwork
{
//user specification on layers INCLUDES input, output layers.
private int lyerAmnt;
private int[] lyerSzes;
private List<double[]> biases;
private List<double[,]> weights;
private List<double[]> biasupdates;
private List<double[,]> weightsupdates;
private List<double[]> network;
public double[] getLayerFromNet(int index)
{
return this.network[index];
}
//test with different amounts of layers. observe convergence.
public FeedForwardNetwork(int layerAmount, int[] layerSizes)
{
Random random = new Random();
this.biases = new List<double[]>();
this.weights = new List<double[,]>();
this.biasupdates = new List<double[]>();
this.weightsupdates = new List<double[,]>();
this.network = new List<double[]>();
//initialize components of instance.
this.lyerAmnt = layerAmount;
this.lyerSzes = layerSizes;
for (int i = 1; i < this.lyerAmnt; i++)
{
double[] biaslayer = new double[this.lyerSzes[i]];
for (int j = 0; j < this.lyerSzes[i]; j++)
{
biaslayer[j] = Helper.Sigmoid(2 * random.NextDouble());
}
this.biases.Add(biaslayer);
}
for (int i = 1; i < this.lyerAmnt; i++)
{
double[,] weightsmatrix = new double[this.lyerSzes[i], this.lyerSzes[i - 1]];
for (int j = 0; j < this.lyerSzes[i]; j++)
{
for (int k = 0; k < this.lyerSzes[i - 1]; k++)
{
weightsmatrix[j, k] = Helper.Sigmoid(2 * random.NextDouble());
}
}
this.weights.Add(weightsmatrix);
}
for (int i = 1; i < this.lyerAmnt; i++)
{
double[] biasupdatelayer = new double[this.lyerSzes[i]];
this.biasupdates.Add(biasupdatelayer);
}
for (int i = 1; i < this.lyerAmnt; i++)
{
double[,] weightsupdatematrix = new double[this.lyerSzes[i], this.lyerSzes[i - 1]];
this.weightsupdates.Add(weightsupdatematrix);
}
for (int i = 0; i < this.lyerAmnt - 1; i++)
{
this.network.Add(new double[this.lyerSzes[i + 1]]);
}
}
public int getLayerAmount() { return this.lyerAmnt; }
public int[] getLayerSizes() { return this.lyerSzes; }
//Test function
public double Test(double[] inputTestSet, double[] outputTestSet)
{
double error = Cost(inputTestSet, outputTestSet);
return error;
}
//training function
public void Train(double learningRate, int iterationsPerSet, double[] inputSet, double[] outputSet)
{
for (int l = 0; l < iterationsPerSet; l++)
{
for (int i = this.weightsupdates.Count - 1; i >= 0; i--)
{
double[,] mat = this.weightsupdates[i];
for (int j = mat.GetLength(0) - 1; j >= 0; j--)
{
for (int k = mat.GetLength(1) - 1; k >= 0; k--)
{
mat[j, k] = (-1 * learningRate * CostPDerivweights(inputSet, outputSet, i, j, k));
}
}
}
for (int i = this.biasupdates.Count - 1; i >= 0; i--)
{
double[] biaslyer = this.biasupdates[i];
for (int j = biaslyer.Length - 1; j >= 0; j--)
{
biaslyer[j] = (-1 * learningRate * CostPDerivbiases(inputSet, outputSet, i, j));
}
}
//updating weights and biases.
this.biases = this.biasupdates;
this.weights = this.weightsupdates;
}
}
//Cost Function
public double Cost(double[] inputSet, double[] outputSet)
{
this.network.Insert(0, inputSet);
for (int i = 1; i < this.lyerAmnt; i++)
{
this.network[i] = Helper.Sigmoid(Helper.AddVec(Helper.MultVecMa(this.weights[i - 1], this.network[i - 1]), this.biases[i - 1]));
}
double[] errVec = Helper.SubVec(outputSet, this.network[this.lyerAmnt - 1]);
double error = 0;
for (int i = 0; i < errVec.Length; i++)
{
error += 0.5 * Math.Pow(errVec[i], 2);
}
return error;
}
private double CostPDerivweights(double[] inputSet, double[] outputSet, int pos1, int pos2, int pos3)
{
double r = 0.0001;
double[,] w = this.weights[pos1];
w[pos2, pos3] = w[pos2, pos3] + r;
double affected = Cost(inputSet, outputSet);
w[pos2, pos3] = w[pos2, pos3] - r;
double original = Cost(inputSet, outputSet);
double partiald = (affected - original) / r;
return partiald;
}
private double CostPDerivbiases(double[] inputSet, double[] outputSet, int pos1, int pos2)
{
double r = 0.0001;
double[] b = this.biases[pos1];
b[pos2] = b[pos2] + r;
double affected = Cost(inputSet, outputSet);
b[pos2] = b[pos2] - r;
double original = Cost(inputSet, outputSet);
double partiald = (affected - original) / r;
return partiald;
}
public void saveFeedForwardNetwork()
{
}
private void saveWeights()
{
}
private void saveBiases()
{
List<double[]> save = new List<double[]>();
foreach (double[] bias in biases)
{
save.Add(bias);
}
}
public void pullFeedForwardNetwork()
{
}
}
public class Helper
{
public static double Sigmoid(double x)
{
return 1 / (1 + Math.Exp(-1 * x));
}
public static double[] Sigmoid(double[] xvec)
{
double[] final = new double[xvec.Length];
for (int i = 0; i < xvec.Length; i++)
{
final[i] = 1 / (1 + Math.Exp(-1 * xvec[i]));
}
return final;
}
public static double[] MultVecMa(double[,] matrix, double[] vector)
{
double[] final = new double[matrix.GetLength(0)];
for (int i = 0; i < matrix.GetLength(0); i++)
{
final[i] = 0;
for (int j = 0; j < matrix.GetLength(1); j++)
{
final[i] += matrix[i, j] * vector[j];
}
}
return final;
}
public static double[] AddVec(double[] A, double[] B)
{
double[] final = new double[A.Length];
for (int i = 0; i < A.Length; i++)
{
final[i] = A[i] + B[i];
}
return final;
}
public static double[] SubVec(double[] A, double[] B)
{
double[] final = new double[A.Length];
for (int i = 0; i < A.Length; i++)
{
final[i] = A[i] - B[i];
}
return final;
}
public double[] ScalarVectorMult(double scalarA, double[] vectorA)
{
double[] finalVector = new double[vectorA.Length];
for (int i = 0; i < vectorA.Length; i++)
{
finalVector[i] = (vectorA[i] * scalarA);
}
return finalVector;
}
}
}