forked from kailigo/cddod
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainval_net_global_local.py
executable file
·494 lines (391 loc) · 17.7 KB
/
trainval_net_global_local.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
# coding:utf-8
# --------------------------------------------------------
# Pytorch multi-GPU Faster R-CNN
# Licensed under The MIT License [see LICENSE for details]
# Written by Jiasen Lu, Jianwei Yang, based on code from Ross Girshick
# --------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import numpy as np
import pprint
import pdb
import time
import _init_paths
from pdb import set_trace as breakpoint
import torch
from torch.autograd import Variable
import torch.nn as nn
from roi_data_layer.roidb import combined_roidb
from roi_data_layer.roibatchLoader import roibatchLoader
from model.utils.config import cfg, cfg_from_file, cfg_from_list, get_output_dir
from model.utils.net_utils import weights_normal_init, save_net, load_net, \
adjust_learning_rate, save_checkpoint, clip_gradient, FocalLoss, sampler, calc_supp, EFocalLoss
from model.utils.parser_func import parse_args, set_dataset_args
from model.rpn.bbox_transform import clip_boxes
from model.nms.nms_wrapper import nms
from model.rpn.bbox_transform import bbox_transform_inv
import sys
from log_utils.utils import ReDirectSTD
def test_model_while_training(fasterRCNN, args):
# args = parse_args()
# args = set_dataset_args(args, test=True)
# np.random.seed(cfg.RNG_SEED)
if args.cfg_file is not None:
cfg_from_file(args.cfg_file)
if args.set_cfgs is not None:
cfg_from_list(args.set_cfgs)
cfg.TRAIN.USE_FLIPPED = False
# args.imdbval_name = 'clipart_test'
imdb, roidb, ratio_list, ratio_index = combined_roidb(args.imdbval_name_target, False)
# breakpoint()
imdb.competition_mode(on=True)
print('{:d} roidb entries'.format(len(roidb)))
im_data = torch.FloatTensor(1)
im_info = torch.FloatTensor(1)
num_boxes = torch.LongTensor(1)
gt_boxes = torch.FloatTensor(1)
if args.cuda:
im_data = im_data.cuda()
im_info = im_info.cuda()
num_boxes = num_boxes.cuda()
gt_boxes = gt_boxes.cuda()
# make variable
im_data = Variable(im_data)
im_info = Variable(im_info)
num_boxes = Variable(num_boxes)
gt_boxes = Variable(gt_boxes)
if args.cuda:
cfg.CUDA = True
# if args.cuda:
# fasterRCNN.cuda()
start = time.time()
max_per_image = 100
thresh = 0.0
save_name = args.load_name.split('/')[-1]
num_images = len(imdb.image_index)
all_boxes = [[[] for _ in range(num_images)]
for _ in range(imdb.num_classes)]
output_dir = get_output_dir(imdb, save_name)
dataset = roibatchLoader(roidb, ratio_list, ratio_index, 1, \
imdb.num_classes, training=False, normalize = False, path_return=True)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=1,
shuffle=False, num_workers=0, pin_memory=True)
data_iter = iter(dataloader)
_t = {'im_detect': time.time(), 'misc': time.time()}
det_file = os.path.join(output_dir, 'detections.pkl')
fasterRCNN.eval()
empty_array = np.transpose(np.array([[],[],[],[],[]]), (1,0))
for i in range(num_images):
data = next(data_iter)
im_data.data.resize_(data[0].size()).copy_(data[0])
#print(data[0].size())
im_info.data.resize_(data[1].size()).copy_(data[1])
gt_boxes.data.resize_(data[2].size()).copy_(data[2])
num_boxes.data.resize_(data[3].size()).copy_(data[3])
det_tic = time.time()
rois, cls_prob, bbox_pred, \
rpn_loss_cls, rpn_loss_box, \
RCNN_loss_cls, RCNN_loss_bbox, \
rois_label, _, _ = fasterRCNN(im_data, im_info, gt_boxes, num_boxes)
scores = cls_prob.data
boxes = rois.data[:, :, 1:5]
# d_pred = d_pred.data
path = data[4]
if cfg.TEST.BBOX_REG:
# Apply bounding-box regression deltas
box_deltas = bbox_pred.data
if cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED:
# Optionally normalize targets by a precomputed mean and stdev
if args.class_agnostic:
box_deltas = box_deltas.view(-1, 4) * torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_STDS).cuda() \
+ torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_MEANS).cuda()
box_deltas = box_deltas.view(1, -1, 4)
else:
box_deltas = box_deltas.view(-1, 4) * torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_STDS).cuda() \
+ torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_MEANS).cuda()
box_deltas = box_deltas.view(1, -1, 4 * len(imdb.classes))
pred_boxes = bbox_transform_inv(boxes, box_deltas, 1)
pred_boxes = clip_boxes(pred_boxes, im_info.data, 1)
else:
# Simply repeat the boxes, once for each class
pred_boxes = np.tile(boxes, (1, scores.shape[1]))
pred_boxes /= data[1][0][2].item()
scores = scores.squeeze()
pred_boxes = pred_boxes.squeeze()
det_toc = time.time()
detect_time = det_toc - det_tic
misc_tic = time.time()
for j in range(1, imdb.num_classes):
inds = torch.nonzero(scores[:,j]>thresh).view(-1)
# if there is det
if inds.numel() > 0:
cls_scores = scores[:,j][inds]
_, order = torch.sort(cls_scores, 0, True)
if args.class_agnostic:
cls_boxes = pred_boxes[inds, :]
else:
cls_boxes = pred_boxes[inds][:, j * 4:(j + 1) * 4]
cls_dets = torch.cat((cls_boxes, cls_scores.unsqueeze(1)), 1)
# cls_dets = torch.cat((cls_boxes, cls_scores), 1)
cls_dets = cls_dets[order]
keep = nms(cls_dets, cfg.TEST.NMS)
cls_dets = cls_dets[keep.view(-1).long()]
all_boxes[j][i] = cls_dets.cpu().numpy()
else:
all_boxes[j][i] = empty_array
# Limit to max_per_image detections *over all classes*
if max_per_image > 0:
image_scores = np.hstack([all_boxes[j][i][:, -1]
for j in range(1, imdb.num_classes)])
if len(image_scores) > max_per_image:
image_thresh = np.sort(image_scores)[-max_per_image]
for j in range(1, imdb.num_classes):
keep = np.where(all_boxes[j][i][:, -1] >= image_thresh)[0]
all_boxes[j][i] = all_boxes[j][i][keep, :]
# misc_toc = time.time()
sys.stdout.write('im_detect: {:d}/{:d} {:.3f}s \r' \
.format(i + 1, num_images, detect_time))
sys.stdout.flush()
imdb.evaluate_detections(all_boxes, output_dir)
if __name__ == '__main__':
args = parse_args()
print('Called with args:')
print(args)
args = set_dataset_args(args)
if args.cfg_file is not None:
cfg_from_file(args.cfg_file)
if args.set_cfgs is not None:
cfg_from_list(args.set_cfgs)
log_file = './logs/' + args.imdb_name + '-' + args.imdb_name_target + '/' + args.stdout_file
ReDirectSTD(log_file, 'stdout', False)
print('Using config:')
pprint.pprint(cfg)
np.random.seed(cfg.RNG_SEED)
# torch.backends.cudnn.benchmark = True
if torch.cuda.is_available() and not args.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
# train set
# -- Note: Use validation set and disable the flipped to enable faster loading.
cfg.TRAIN.USE_FLIPPED = True
cfg.USE_GPU_NMS = args.cuda
# source dataset
imdb, roidb, ratio_list, ratio_index = combined_roidb(args.imdb_name)
train_size = len(roidb)
# target dataset
imdb_t, roidb_t, ratio_list_t, ratio_index_t = combined_roidb(args.imdb_name_target)
train_size_t = len(roidb_t)
print('{:d} source roidb entries'.format(len(roidb)))
print('{:d} target roidb entries'.format(len(roidb_t)))
# breakpoint()
output_dir = args.save_dir + "/" + args.net + "/" + args.dataset
if not os.path.exists(output_dir):
os.makedirs(output_dir)
sampler_batch = sampler(train_size, args.batch_size)
sampler_batch_t = sampler(train_size_t, args.batch_size)
dataset_s = roibatchLoader(roidb, ratio_list, ratio_index, args.batch_size, \
imdb.num_classes, training=True)
# breakpoint()
dataloader_s = torch.utils.data.DataLoader(dataset_s, batch_size=args.batch_size,
sampler=sampler_batch, num_workers=args.num_workers)
dataset_t = roibatchLoader(roidb_t, ratio_list_t, ratio_index_t, args.batch_size, \
imdb.num_classes, training=True)
dataloader_t = torch.utils.data.DataLoader(dataset_t, batch_size=args.batch_size,
sampler=sampler_batch_t, num_workers=args.num_workers)
# initilize the tensor holder here.
im_data = torch.FloatTensor(1)
im_info = torch.FloatTensor(1)
num_boxes = torch.LongTensor(1)
gt_boxes = torch.FloatTensor(1)
# ship to cuda
if args.cuda:
im_data = im_data.cuda()
im_info = im_info.cuda()
num_boxes = num_boxes.cuda()
gt_boxes = gt_boxes.cuda()
# make variable
im_data = Variable(im_data)
im_info = Variable(im_info)
num_boxes = Variable(num_boxes)
gt_boxes = Variable(gt_boxes)
if args.cuda:
cfg.CUDA = True
# initilize the network here.
# from model.faster_rcnn.vgg16_global_local import vgg16
from model.faster_rcnn.resnet_global_local import resnet
# from model.faster_rcnn.resnet_global_local_pseudo_label import resnet
if args.net == 'vgg16':
fasterRCNN = vgg16(imdb.classes, pretrained=True, class_agnostic=args.class_agnostic, lc=args.lc,
gc=args.gc)
elif args.net == 'res101':
fasterRCNN = resnet(imdb.classes, 101, pretrained=True, class_agnostic=args.class_agnostic,
lc=args.lc, gc=args.gc)
elif args.net == 'res50':
fasterRCNN = resnet(imdb.classes, 50, pretrained=True, class_agnostic=args.class_agnostic, context=args.context)
else:
print("network is not defined")
pdb.set_trace()
fasterRCNN.create_architecture()
# breakpoint()
lr = cfg.TRAIN.LEARNING_RATE
lr = args.lr
# tr_momentum = cfg.TRAIN.MOMENTUM
# tr_momentum = args.momentum
params = []
for key, value in dict(fasterRCNN.named_parameters()).items():
if value.requires_grad:
if 'bias' in key:
params += [{'params': [value], 'lr': lr * (cfg.TRAIN.DOUBLE_BIAS + 1), \
'weight_decay': cfg.TRAIN.BIAS_DECAY and cfg.TRAIN.WEIGHT_DECAY or 0}]
else:
params += [{'params': [value], 'lr': lr, 'weight_decay': cfg.TRAIN.WEIGHT_DECAY}]
if args.optimizer == "adam":
lr = lr * 0.1
optimizer = torch.optim.Adam(params)
elif args.optimizer == "sgd":
optimizer = torch.optim.SGD(params, momentum=cfg.TRAIN.MOMENTUM)
if args.cuda:
fasterRCNN.cuda()
if args.resume:
checkpoint = torch.load(args.load_name)
args.session = checkpoint['session']
args.start_epoch = checkpoint['epoch']
fasterRCNN.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
lr = optimizer.param_groups[0]['lr']
if 'pooling_mode' in checkpoint.keys():
cfg.POOLING_MODE = checkpoint['pooling_mode']
print("loaded checkpoint %s" % (args.load_name))
if args.mGPUs:
fasterRCNN = nn.DataParallel(fasterRCNN)
iters_per_epoch = int(10000 / args.batch_size)
if args.ef:
FL = EFocalLoss(class_num=2, gamma=args.gamma)
else:
FL = FocalLoss(class_num=2, gamma=args.gamma)
if args.use_tfboard:
from tensorboardX import SummaryWriter
logger = SummaryWriter("logs")
# test_model_while_training(fasterRCNN, args)
count_iter = 0
for epoch in range(args.start_epoch, args.max_epochs + 1):
# setting to train mode
fasterRCNN.train()
loss_temp = 0
start = time.time()
if epoch % (args.lr_decay_step + 1) == 0:
adjust_learning_rate(optimizer, args.lr_decay_gamma)
lr *= args.lr_decay_gamma
data_iter_s = iter(dataloader_s)
data_iter_t = iter(dataloader_t)
for step in range(iters_per_epoch):
try:
data_s = next(data_iter_s)
except:
data_iter_s = iter(dataloader_s)
data_s = next(data_iter_s)
try:
data_t = next(data_iter_t)
except:
data_iter_t = iter(dataloader_t)
data_t = next(data_iter_t)
#eta = 1.0
count_iter += 1
#put source data into variable
im_data.data.resize_(data_s[0].size()).copy_(data_s[0])
im_info.data.resize_(data_s[1].size()).copy_(data_s[1])
gt_boxes.data.resize_(data_s[2].size()).copy_(data_s[2])
num_boxes.data.resize_(data_s[3].size()).copy_(data_s[3])
fasterRCNN.zero_grad()
rois, cls_prob, bbox_pred, \
rpn_loss_cls, rpn_loss_box, \
RCNN_loss_cls, RCNN_loss_bbox, \
rois_label, out_d_pixel, out_d = fasterRCNN(im_data, im_info, gt_boxes, num_boxes)
loss = rpn_loss_cls.mean() + rpn_loss_box.mean() \
+ RCNN_loss_cls.mean() + RCNN_loss_bbox.mean()
loss_temp += loss.item()
# domain label
domain_s = Variable(torch.zeros(out_d.size(0)).long().cuda())
# global alignment loss
dloss_s = 0.5 * FL(out_d, domain_s)
# local alignment loss
dloss_s_p = 0.5 * torch.mean(out_d_pixel ** 2)
#put target data into variable
im_data.data.resize_(data_t[0].size()).copy_(data_t[0])
im_info.data.resize_(data_t[1].size()).copy_(data_t[1])
#gt is empty
gt_boxes.data.resize_(1, 1, 5).zero_()
num_boxes.data.resize_(1).zero_()
out_d_pixel, out_d = fasterRCNN(im_data, im_info, gt_boxes, num_boxes, target=True)
# domain label
domain_t = Variable(torch.ones(out_d.size(0)).long().cuda())
dloss_t = 0.5 * FL(out_d, domain_t)
# local alignment loss
dloss_t_p = 0.5 * torch.mean((1 - out_d_pixel) ** 2)
if args.dataset == 'sim10k':
loss += (dloss_s + dloss_t + dloss_s_p + dloss_t_p) * args.eta
else:
loss += (dloss_s + dloss_t + dloss_s_p + dloss_t_p)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if step % args.disp_interval == 0:
end = time.time()
if step > 0:
loss_temp /= (args.disp_interval + 1)
if args.mGPUs:
loss_rpn_cls = rpn_loss_cls.mean().item()
loss_rpn_box = rpn_loss_box.mean().item()
loss_rcnn_cls = RCNN_loss_cls.mean().item()
loss_rcnn_box = RCNN_loss_bbox.mean().item()
fg_cnt = torch.sum(rois_label.data.ne(0))
bg_cnt = rois_label.data.numel() - fg_cnt
else:
loss_rpn_cls = rpn_loss_cls.item()
loss_rpn_box = rpn_loss_box.item()
loss_rcnn_cls = RCNN_loss_cls.item()
loss_rcnn_box = RCNN_loss_bbox.item()
dloss_s = dloss_s.item()
dloss_t = dloss_t.item()
dloss_s_p = dloss_s_p.item()
dloss_t_p = dloss_t_p.item()
fg_cnt = torch.sum(rois_label.data.ne(0))
bg_cnt = rois_label.data.numel() - fg_cnt
print("[session %d][epoch %2d][iter %4d/%4d] loss: %.4f, lr: %.2e" \
% (args.session, epoch, step, iters_per_epoch, loss_temp, lr))
print("\t\t\tfg/bg=(%d/%d), time cost: %f" % (fg_cnt, bg_cnt, end - start))
print(
"\t\t\trpn_cls: %.4f, rpn_box: %.4f, rcnn_cls: %.4f, rcnn_box %.4f dloss s: %.4f dloss t: %.4f dloss s pixel: %.4f dloss t pixel: %.4f eta: %.4f" \
% (loss_rpn_cls, loss_rpn_box, loss_rcnn_cls, loss_rcnn_box, dloss_s, dloss_t, dloss_s_p, dloss_t_p,
args.eta))
if args.use_tfboard:
info = {
'loss': loss_temp,
'loss_rpn_cls': loss_rpn_cls,
'loss_rpn_box': loss_rpn_box,
'loss_rcnn_cls': loss_rcnn_cls,
'loss_rcnn_box': loss_rcnn_box
}
logger.add_scalars("logs_s_{}/losses".format(args.session), info,
(epoch - 1) * iters_per_epoch + step)
loss_temp = 0
start = time.time()
save_name = os.path.join(output_dir,
'globallocal_target_{}_eta_{}_local_context_{}_global_context_{}_gamma_{}_session_{}_epoch_{}_step_{}.pth'.format(
args.dataset_t, args.eta,
args.lc, args.gc, args.gamma,
args.session, epoch,
step))
test_model_while_training(fasterRCNN, args)
save_checkpoint({
'session': args.session,
'epoch': epoch + 1,
'model': fasterRCNN.module.state_dict() if args.mGPUs else fasterRCNN.state_dict(),
'optimizer': optimizer.state_dict(),
'pooling_mode': cfg.POOLING_MODE,
'class_agnostic': args.class_agnostic,
}, save_name)
print('save model: {}'.format(save_name))
if args.use_tfboard:
logger.close()