-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
255 lines (213 loc) · 10.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
"""
file - main.py
Main script to train the aesthetic model on the AVA dataset.
Copyright (C) Yunxiao Shi 2017 - 2021
NIMA is released under the MIT license. See LICENSE for the fill license text.
"""
import argparse
import os
import numpy as np
import matplotlib
# matplotlib.use('Agg')
import matplotlib.pyplot as plt
import torch
import torch.autograd as autograd
import torch.optim as optim
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.datasets as dsets
import torchvision.models as models
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import Dataset
from dataset.dataset import AVADataset, AVADataset_mean, AVADataset_binary
from model.model import NIMA, Emd_loss
def main(config):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
writer = SummaryWriter()
train_transform = transforms.Compose([
transforms.Scale(256),
transforms.RandomCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
val_transform = transforms.Compose([
transforms.Scale(256),
transforms.RandomCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
base_model = models.vgg16(pretrained=True)
model = NIMA(base_model, num_classes=1)
# model = models.VGG(base_model, num_classes=1)
# model = models.vgg16(pretrained=True).to(device)
if config.warm_start:
model.load_state_dict(torch.load(os.path.join(config.ckpt_path, 'epoch-%d.pth' % config.warm_start_epoch)))
print('Successfully loaded model epoch-%d.pth' % config.warm_start_epoch)
if config.multi_gpu:
model.features = torch.nn.DataParallel(model.features, device_ids=config.gpu_ids)
model = model.to(device)
else:
model = model.to(device)
conv_base_lr = config.conv_base_lr
dense_lr = config.dense_lr
# optimizer = optim.SGD([
# {'params': model.features.parameters(), 'lr': conv_base_lr},
# {'params': model.classifier.parameters(), 'lr': dense_lr}],
# momentum=0.9
# )
optimizer = optim.Adam(model.parameters(), lr=1e-4)
# criterion = Emd_loss(r=2).to(device)
# criterion = nn.CrossEntropyLoss().to(device)
# criterion = nn.BCEWithLogitsLoss().to(device)
criterion = nn.MSELoss().to(device)
param_num = 0
for param in model.parameters():
if param.requires_grad:
param_num += param.numel()
print('Trainable params: %.2f million' % (param_num / 1e6))
if config.train:
# trainset = AVADataset(csv_file=config.train_csv_file, root_dir=config.img_path, transform=train_transform)
trainset = AVADataset_mean(csv_file=config.train_csv_file, root_dir=config.img_path, transform=train_transform)
# trainset = AVADataset_binary(csv_file=config.train_csv_file, root_dir=config.img_path, transform=train_transform)
# valset = AVADataset(csv_file=config.val_csv_file, root_dir=config.img_path, transform=val_transform)
valset = AVADataset_mean(csv_file=config.val_csv_file, root_dir=config.img_path, transform=val_transform)
# valset = AVADataset_binary(csv_file=config.val_csv_file, root_dir=config.img_path, transform=val_transform)
train_loader = torch.utils.data.DataLoader(trainset, batch_size=config.train_batch_size,
shuffle=True)
val_loader = torch.utils.data.DataLoader(valset, batch_size=config.val_batch_size,
shuffle=False)
# for early stopping
count = 0
init_val_loss = float('inf')
train_losses = []
val_losses = []
for epoch in range(config.warm_start_epoch, config.epochs):
batch_losses = []
for i, data in enumerate(train_loader):
images = data['image'].to(device)
# labels = data['annotations'].to(device).float()
labels = data['annotations'].to(device).double()
outputs = model(images).double()
# outputs = base_model(images)
# outputs = outputs.view(-1, 10, 1)
outputs = outputs.view(-1, 1, 1)
# labels = labels.view(-1, 1)
optimizer.zero_grad()
# print(outputs)
loss = criterion(outputs, labels)
# loss = emd_loss(labels, outputs)
batch_losses.append(loss.item())
loss.backward()
optimizer.step()
print('Epoch: %d/%d | Step: %d/%d | Training EMD loss: %.4f' % (epoch + 1, config.epochs, i + 1, len(trainset) // config.train_batch_size + 1, loss.item()))
writer.add_scalar('batch train loss', loss.item(), i + epoch * (len(trainset) // config.train_batch_size + 1))
avg_loss = sum(batch_losses) / (len(trainset) // config.train_batch_size + 1)
train_losses.append(avg_loss)
print('Epoch %d mean training EMD loss: %.4f' % (epoch + 1, avg_loss))
# exponetial learning rate decay
if config.decay:
if (epoch + 1) % 10 == 0:
conv_base_lr = conv_base_lr * config.lr_decay_rate ** ((epoch + 1) / config.lr_decay_freq)
dense_lr = dense_lr * config.lr_decay_rate ** ((epoch + 1) / config.lr_decay_freq)
optimizer = optim.SGD([
{'params': model.features.parameters(), 'lr': conv_base_lr},
{'params': model.classifier.parameters(), 'lr': dense_lr}],
momentum=0.9
)
# do validation after each epoch
batch_val_losses = []
for data in val_loader:
images = data['image'].to(device)
# labels = data['annotations'].to(device).float()
labels = data['annotations'].to(device)
with torch.no_grad():
outputs = model(images)
# outputs = base_model(images)
# outputs = outputs.view(-1, 10, 1)
outputs = outputs.view(-1, 1, 1)
# labels = labels.view(-1, 1)
val_loss = criterion(outputs, labels)
# val_loss = emd_loss(labels, outputs)
batch_val_losses.append(val_loss.item())
avg_val_loss = sum(batch_val_losses) / (len(valset) // config.val_batch_size + 1)
val_losses.append(avg_val_loss)
print('Epoch %d completed. Mean EMD loss on val set: %.4f.' % (epoch + 1, avg_val_loss))
writer.add_scalars('epoch losses', {'epoch train loss': avg_loss, 'epoch val loss': avg_val_loss}, epoch + 1)
# Use early stopping to monitor training
if avg_val_loss < init_val_loss:
init_val_loss = avg_val_loss
# save model weights if val loss decreases
print('Saving model...')
if not os.path.exists(config.ckpt_path):
os.makedirs(config.ckpt_path)
torch.save(model.state_dict(), os.path.join(config.ckpt_path, 'epoch-%d.pth' % (epoch + 1)))
print('Done.\n')
# reset count
count = 0
elif avg_val_loss >= init_val_loss:
count += 1
if count == config.early_stopping_patience:
print('Val EMD loss has not decreased in %d epochs. Training terminated.' % config.early_stopping_patience)
break
print('Training completed.')
# use tensorboard to log statistics instead
if config.save_fig:
# plot train and val loss
epochs = range(1, epoch + 2)
plt.plot(epochs, train_losses, 'b-', label='train loss')
plt.plot(epochs, val_losses, 'g-', label='val loss')
plt.title('EMD loss')
plt.legend()
plt.savefig('./loss.png')
if config.test:
model.eval()
# compute mean score
test_transform = val_transform
testset = AVADataset(csv_file=config.test_csv_file, root_dir=config.img_path, transform=test_transform)
test_loader = torch.utils.data.DataLoader(testset, batch_size=config.test_batch_size, shuffle=False, num_workers=config.num_workers)
mean_preds = []
std_preds = []
for data in test_loader:
image = data['image'].to(device)
output = model(image)
output = output.view(-1, 10, 1)
predicted_mean, predicted_std = 0.0, 0.0
for i, elem in enumerate(output, 1):
predicted_mean += i * elem
for j, elem in enumerate(output, 1):
predicted_std += elem * (j - predicted_mean) ** 2
predicted_std = predicted_std ** 0.5
mean_preds.append(predicted_mean)
std_preds.append(predicted_std)
# Do what you want with predicted and std...
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# input parameters
parser.add_argument('--img_path', type=str, default='./dataset/images')
parser.add_argument('--train_csv_file', type=str, default='./dataset/annotations_train_norm.csv')
parser.add_argument('--val_csv_file', type=str, default='./dataset/annotations_val_norm.csv')
parser.add_argument('--test_csv_file', type=str, default='./dataset/annotations_test_norm.csv')
# training parameters
parser.add_argument('--train', action='store_false')
parser.add_argument('--test', action='store_true')
parser.add_argument('--decay', action='store_false')
parser.add_argument('--conv_base_lr', type=float, default=5e-3)
parser.add_argument('--dense_lr', type=float, default=5e-4)
parser.add_argument('--lr_decay_rate', type=float, default=0.95)
parser.add_argument('--lr_decay_freq', type=int, default=10)
parser.add_argument('--train_batch_size', type=int, default=64)
parser.add_argument('--val_batch_size', type=int, default=64)
parser.add_argument('--test_batch_size', type=int, default=1)
parser.add_argument('--num_workers', type=int, default=1)
parser.add_argument('--epochs', type=int, default=100)
# misc
parser.add_argument('--ckpt_path', type=str, default='./ckpts')
parser.add_argument('--multi_gpu', action='store_true')
parser.add_argument('--gpu_ids', type=list, default=None)
parser.add_argument('--warm_start', action='store_true')
parser.add_argument('--warm_start_epoch', type=int, default=0)
parser.add_argument('--early_stopping_patience', type=int, default=10)
parser.add_argument('--save_fig', action='store_false')
config = parser.parse_args()
main(config)